Supporting Information

Dispersive solid-phase extraction using microporous sorbent UiO-66 coupled to gas chromatography-tandem mass spectrometry: A QuEChERS-type method for the determination of organophosphorus pesticide residues in edible vegetable oils without matrix interference

Xuejin Mao,[†] Aiping Yan,[‡] Yiqun Wan,^{*,†,‡} Dongmei Luo,[∥] and Hongshun Yang^{*, §}

[†] State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China

[‡] Center of Analysis and Testing, Nanchang University, Nanchang 330047, People's Republic of China

[§] Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore

^ICollege of Chemistry and Chemical Engineering, Chifeng University, Chifeng 024000, People's Republic of China

*Corresponding author:

Yiqun Wan, Ph.D, Professor

State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China

Tel: +86 791 88321370; Fax: +86 791 88321370

E-mail: yqwanoy@sina.com

* Corresponding author:

Hongshun Yang, Ph.D, Assistant Professor Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore Tel: 65-6516 4695; Fax: 65-6775 7895

Email: chmynghs@nus.edu.sg

Preparation of samples for FT-IR and UV-Vis DRS analysis.

The dichlorovos, dimethoate, methidathion and malathion were respectively dissolved in 10 mL *n*-hexane, then UiO-66 was added (pesticide/UiO-66 mass ratio was 0.1). These suspensions were stirred for 6 h and dried at room temperature. The dried samples were collected and used for the FT-IR and UV-Vis DRS analysis.

 Table S1. LODs, LOQs, recoveries, RSDs, and matrix effect (ME) for the

 determination of pyrethroids in apple juice.

		spiked		el 10 ng/g	spiked leve	el 20 ng/g	spiked leve	el 50 ng/g	
pesticides	LODs	LOQs	(n=6)		(n=6)		(n=6)		ME
	(ng/g)	(ng/g)	recovery	RSD	recovery	RSD	recovery	RSD	(%)
			(%)	(%)	(%)	(%)	(%)	(%)	
bifenthrin	1.5	4.6	68.9	5.7	71.0	8.0	70.4	7.3	-4.6
cyhalothrin	0.8	3.0	95.7	10.3	93.3	9.0	96.6	12.0	-1.2
permethrin	0.9	2.9	95.5	13.9	116.8	5.2	119.0	9.0	9.9
fenvalerate	1.0	3.6	102.6	13.2	119.0	10.3	108.2	7.0	19.1

Figure S1. Characterization of the UIO-66: X-ray diffraction (XRD) patterns of the as-synthesized UiO-66 and simulated UIO-66 (A); and N_2 sorption isotherm of the as-synthesized UiO-66 (B).

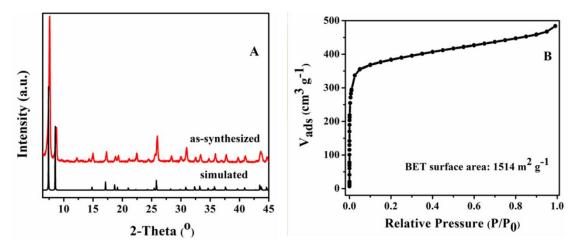
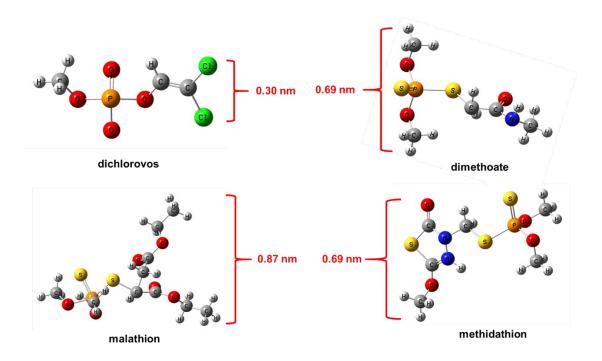



Figure S1

Figure S2. The pesticide structures optimized by Gaussian 09W program package together with the Gview 5.0.

Gaussian 09W program package together with the Gview 5.0¹ have been employed to perform all calculations including Single point energy of 4 compounds by (no symmetry constraint) Becke's 3-parameter hybrid exchange functional joined with Lee-Yang-Parr's gradient corrected correlation functional B3LYP²⁻³ with 6-31+G(d) basis-set.⁴ We obtained the size of the 4 compounds from different directions. All calculations have been performed in Inner Mongolia Key Laboratory of Photoelectric Functional Materials.

REFERENCES

(1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. **2009** Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT.

(2) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A* **1988**, *38*, 3098–3100.

(3) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **1988**, *37*, 785–789.

(4) Petersson, G. A.; Al-Laham, M. A. A complete basis set model chemistry. II. Openshell systems and the total energies of the first-row atoms. *J. Chem. Phys.* **1991**, *94*, 6081–6090.