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REVIEW

Recent advances in the application of metabolomics for food safety control and
food quality analyses

Shubo Lia, Yufeng Tiana, Pingyingzi Jianga, Ying Lina, Xiaoling Liua, and Hongshun Yangb

aCollege of Light Industry and Food Engineering, Guangxi University, Nanning, China; bDepartment of Food Science & Technology, National
University of Singapore, Singapore, Singapore

ABSTRACT
As one of the omics fields, metabolomics has unique advantages in facilitating the understanding
of physiological and pathological activities in biology, physiology, pathology, and food science. In
this review, based on developments in analytical chemistry tools, cheminformatics, and bioinfor-
matics methods, we highlight the current applications of metabolomics in food safety, food
authenticity and quality, and food traceability. Additionally, the combined use of metabolomics
with other omics techniques for “foodomics” is comprehensively described. Finally, the latest
developments and advances, practical challenges and limitations, and requirements related to the
application of metabolomics are critically discussed, providing new insight into the application of
metabolomics in food analysis.
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Introduction

Food safety is being challenged by the global scale of food
supply chains (Stewart et al. 2018), and most countries have
created laws and regulations to guarantee food safety.
However, with the globalization of food production and dis-
tribution, there are several risks of food pollution caused by
environmental and anthropogenic sources (Akrami-Mohajeri
et al. 2018, Derakhshan et al. 2018), including microbial
organisms, organic and inorganic chemical pollutants, drugs,
and physical hazards. Foodborne pathogens have become
one of the major concerns in the food sector, but there has
been no reduction in the incidence of foodborne diseases
despite of advances in analytical tools and establishments of
food laws (Havelaar et al. 2015). More importantly, with
consumers making better-informed decisions on food prod-
ucts, there is considerable attention given to the biochemical
composition of foods, the mechanisms by which they are
affected during processing, transportation, and storage, and
to methods for improving health through functional foods,
functional ingredients, and nutraceuticals (Stewart et al.
2018). Therefore, endless efforts are required to improve the
efficiency of current regulatory systems for ensuring public
safety. In this manner, more sensitive, robust, efficient, and
cost-effective analytical methods should be further developed
to ensure the safety, quality, and traceability of foods with-
out compromising nutritional, functional, and sensory char-
acteristics according to legislation and consumers demands
(Liu, Wu, and Chan 2019).

Recently, the growing interest on food-related topics,
such as safety, sensorial profile, quality, traceability, and
compliance with regulatory requirements, has accelerated

the development and implementation of analytical techni-
ques and statistical approaches to understand and predict
these critical issues (Fallahzadeh et al. 2018). As an emerging
field in the biological sciences, metabolomics focuses on
small molecule metabolites of a particular system or organ-
ism at a specific time point (Raamsdonk et al. 2001). Until
recently, metabolomics was an acceptable, reproducible plat-
form technology, and most of the work was focused on
molecular epidemiology, toxicity evaluation, functional and
nutritional genomics, biomarker discovery and identifica-
tion, drug exploitation, and personalized health care
(Buescher et al. 2015, Doerr 2017). For example, metabolo-
mics has already been successfully applied in various fields
of food science, showing promise in maintaining food safety
and food quality (Savolainen et al. 2017; Pinu 2016). Here,
we briefly review various aspects of recent metabolomics
approaches for the evaluation of food safety, food quality
and authenticity, and food traceability. Moreover, the latest
developments and advances, limitations, future evolution,
and applications of metabolomics are also critically dis-
cussed, providing valuable insights for further research
directions in food analysis.

Brief overview of metabolomics

Principle of metabolomics

With the introduction of high-resolution analytical equip-
ment, especially nuclear magnetic resonance (NMR) and
mass spectrometry (MS), sophisticated chromatography,
clever isotope labeling strategies, and powerful software
(Kamphorst and Lewis 2017), metabolomics has emerged to
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comprehensively analyze small molecules (metabolites with
molecular weight <1500Da) in a biological system, provid-
ing mechanistic insights on physiological and pathological
activities in distinct scenarios (Patti, Yanes, and Siuzdak
2012). As one of the major omics tools, extensive metabolo-
mics-based approach has achieved great success in address-
ing a series of issues in biological, biomedical, agricultural,
and nutritional research, including drug discovery, disease
diagnosis, and plant physiology, among others (Pinu,
Goldansaz, et al. 2019).

As for modern food analysis, food metabolomics, which
predominantly evaluates food ingredients, food quality, food
processing, and food pathogens from farm to table, has been
applied in food safety control (in the evaluation of microbial
toxins, allergens, anti-nutritionals, foodborne pathogens, pesti-
cides), food quality (organoleptic properties and nutritional
value), food authenticity (adulterations and geographic origin),
and food traceability (Pinu 2016; Cook and Nightingale 2018).

Aspects of measurement techniques in metabolomics

Analytical technologies of metabolomics
Using different analytical technologies, metabolomics analyzes
a mass of compounds that belong to multiple categories with
diverse physical and chemical characteristics and in a wide
range of concentrations (Zhang, Liu, et al. 2016). Currently,
the two main analytical technologies used in metabolomics
are NMR and MS (Figure 1).

NMR spectroscopy. NMR spectroscopy is an extremely
powerful and rapid analytical platform for elucidating the
structure and conformation of both micro- and macromole-
cules with minimal sample preparation (Bouatra et al. 2013).
In general, NMR can offer several unparalleled advantages,
including selective isotope detection in complex mixtures,
highly reproducible data, de novo determination of crucial
structural parameters of unknown metabolites, accurate
quantification without standards, and in situ analysis of
pathway dynamics from cells to whole organisms without
any destructive effects (Markley et al. 2017). Therefore,
NMR, which provides a “holistic view” of metabolites under
specified conditions, is an essential orthogonal analytical
approach for metabolomics (Wishart 2019).

However, due to limited availability of quantitative meth-
ods and commercial software, NMR has some disadvantages,
such as low sensitivity, poor spectral resolution, and poor
time resolution (Bingol et al. 2016) (Table 1). Technical
advances in high-field magnets, pulse sequences, and cryop-
robe technology could effectively enhance the sensitivity and
resolution of NMR (Markley et al. 2017). Currently, advan-
ces in NMR-related hardware, kit development, pulse
sequence design, and software/databases have contributed to
faster and more economical NMR-based metabolomics. For
example, the pure shift (real-time BIRD) 1H-13C HSQC-SI
has been optimized to simultaneously enhance the sensitivity
and resolution in HSQC spectra without increasing detec-
tion time for typical conditions, such as aqueous solutions

Figure 1. NMR/MS-based technologies used for targeted and untargeted metabolomics (adapted from Ren et al. 2018; Xu et al. 2014).
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and high-field apparatus, providing the more effective and
accurate way for identifying metabolites (Tim�ari et al. 2019).

Mass spectrometry. Due to the high resolution instruments
and compatibility with separation techniques, MS has grad-
ually become the most widely used analytical platform for
metabolomics with high sensitivity, speed, and throughput
(Emwas et al. 2015). However, MS-based metabolomics has
some disadvantages in the detection of trace-level metabo-
lites including high technical variability, massive amounts of
data processing, and limited identification and quantification
of metabolites (Sampson et al. 2013) (Table 1). Therefore, to
improve MS-based metabolomics, it is necessary to improve
the analytical tools used in the detection, identification, and
quantification of unknown metabolites, create standardized
and freely available MS/MS spectral database for identifying
unknown compounds, develop software tools to manage and
process large quantities of raw metabolomics data, and
design chemometric tools to extract information from the
data (Wishart et al. 2018).

There have been significant advances in separation-based
MS techniques including gas chromatography-mass spectrom-
etry (GC-MS), liquid chromatography-mass spectrometry
(LC-MS), capillary electrophoresis-mass spectrometry (CE-
MS), ion mobility-mass spectrometry (IM-MS), separation-
free MS techniques such as direct infusion-mass spectrometry
(DI-MS), matrix-assisted laser desorption ionization-mass
spectrometry (MALDI-MS), mass spectrometry imaging
(MSI), and direct analysis in real time-mass spectrometry
(DART-MS) (Ren et al. 2018) (Figure 1). Therefore, MS not
only allows chemical information analysis of the extractive by
LC-MS or DI-MS, but can also investigate intact tissue or
cells and offer certain information on the location of specific
metabolites when coupled with imaging methods. Among
these imaging methods, LC-MS has become one of the most
widely used instruments in metabolomics because of its high
sensitivity, specificity, and throughput in data acquisition, and
has been applied for both targeted and untargeted metabolic
profiling (Cai and Zhu 2019). Twin derivatization-based LC-

MS (TD-LC–MS) has significantly improved the sensitivity of
LC-MS by 3.6- to 400-fold (Li, Zhang, and Xu 2018), while
the chemical isotope labeling (CIL)-based LC-MS/MS has
been applied to improve and cover a relatively large amount
of metabolites to meet quantification requirements (Jang,
Chen, and Rabinowitz 2018). Therefore, the higher selectivity
and flexibility, and lower detection limits of MS together with
its compatibility with various separation equipment and abil-
ity to generate qualitative and quantitative data make MS as
an excellent tool in metabolomics applications.

Comparison and combination of MS and NMR for metabo-
lomics. As shown in Table 1, NMR is a robust, quantitative,
and reproducible method that requires simple sample prepar-
ation protocols and has a nondestructive nature (Dona et al.
2016). However, NMR has high maintenance costs, lacks sensi-
tivity (�1lM), and is limited in data acquisition and data
processing (Wishart 2019). Comparatively, MS has higher sensi-
tivity and throughput and can detect metabolites at very low
concentrations with a higher resolution (�103 to 104) and
dynamic range (�103 to 104) reliability. However, MS has lower
absolute quantification (Kostidis et al. 2017) and reproducibility
and greater ambiguity of associated spectral signatures (Bingol
and Br€uschweiler 2014) than NMR. Consequently, NMR and
MS have obvious strengths and weaknesses and both uniquely
avail metabolomics, but NMR and MS are highly complemen-
tary analytical methods (Boiteau et al. 2018).

NMR and MS could be combined in various ways: (1) by
physically interfacing NMR and MS hardware, (2) by chem-
ically modifying metabolites through derivatization, (3) by
tracing stable isotopes with isotopically labeled metabolites,
(4) by using combined cheminformatics techniques for a
precise and rapid analysis, or (5) by implementing specific
data processing and data mining techniques via multivariate
statistical-based methods (Bingol et al. 2015). Therefore, the
hybrid MS/NMR approach could significantly increase the
coverage of metabolome and improve the accuracy of
metabolite identification, thereby enhancing the quality and
accuracy of metabolomics data (Bingol 2018).

Table 1. Comparing the main characteristics between NMR and MS-based metabolomics (Wishart 2019; Vignoli et al. 2019).

Technology NMR MS

Reproducibility Excellent reproducibility Moderate reproducibility
Sensitivity Poor to moderate sensitivity (lM) Excellent sensitivity (nM)
Sample preparation Minimal or/and simple Complex, generally requiring chromatographic

separation and derivatization
Effect on sample Nondestructive Destructive
Volume of sample used 0.1–0.5mL 0.01–0.2mL
Coverage of metabolites detected Modest metabolite coverage containing NMR active

nuclei (e.g., amino acids, organic acids, keto acids,
sugars, lipids and nucleotides)

Extensive metabolite coverage, such as most organic
and some inorganic, e.g., amino acids, fatty acids,
phosphates, sugars, steroids, nucleotides, sterols,
glycerolipids, organic acids and metal ions

Types of experiments All metabolites above detection limit are observed
simultaneously

Several, tailored for specific chemical species

Characteristics of spectra Spectra are predictable Spectra not very predictable
Ambiguous/false identification Inherently quantitative and precise structure

determination
Not inherently quantitative and partial structure

determination
Types of instruments Robust instrumentation with easily automated workflow

and minimal instrument downtime
Frail instrumentation with difficult-to-automate

workflow and frequent instrument downtime
Characteristics of instruments Very expensive instrumentation, high cost of

maintaining, and large instrument footprint
Moderately expensive instrumentation, moderate cost of

maintaining, and small instrument footprint
Types of detected results Small spectral databases, and few software resources Large spectral databases, and many software resources
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Analytical approaches in metabolomics
Based on the coverage of metabolites, the analytical
approaches for metabolomics could be further classified as tar-
geted analysis and untargeted analysis (Chaleckis et al. 2019)
(Figure 1). Targeted analysis, which is commonly performed
with LC-MS/MS and NMR, focuses on a particular group of
metabolites that require the identification and quantification
of plenty of metabolites within the group and evaluates organ-
ismal response with respect to environmental perturbation,
xenobiotic exposure, or disease pathology and diagnosis (An,
Yamaguchi, and Fukusaki 2017; Cevallos-Cevallos et al. 2009).
In contrast, untargeted analysis, which is generally carried out
with LC-QTOF-MS/MS and LC-Orbitrap-MS/MS, attempts to
simultaneously identify maximum coverage of metabolites in a
particular system, obtaining patterns or fingerprints without
identifying or quantifying specific compounds (Gallo and
Ferranti 2016). Therefore, untargeted analysis, as an effective
method for simultaneously determining and accurately quanti-
fying a range of different chemical groups, is more suitable for
discovering metabolites that change with respect to manipula-
tion of a biological system (Bloszies and Fiehn 2018), becom-
ing more important in the area of metabolomics. However,
targeted and untargeted methods are highly complementary
and are applied to identify metabolites that change in abun-
dance between two or more conditions (Alonso, Marsal, and
Juli�a 2015).

In addition, according to the particular objective of ana-
lysis and data manipulation, metabolomics research may be
(1) informative, which focuses on the identification and
quantification of targeted or untargeted metabolites to gen-
erate sample intrinsic information (Cruickshank-Quinn et al.
2014); (2) discriminative, which identifies diversities between
sample populations without necessarily establishing statis-
tical models or assessing possible pathways (Ismail et al.
2017); or (3) predictive, which creates statistical models to
predict class memberships (Cevallos-Cevallos et al. 2009).

Metabolomic analysis workflow: a brief overview

To achieve an accurate measurement of either metabolome
or specific metabolites in targeted experiments, many analyt-
ical procedures (including sample preparation, instrumental
analysis, data treatment and statistical analysis, and data
interpretation) are involved in metabolomics research and
directly impact the final results and biological interpretations
(Lamichhane et al. 2015) (Figure 2). However, food is the
complex matrices that involving a broad array of very differ-
ent components, and even some natural compounds nega-
tively impact the analysis of targeted compounds.
Consequently, proper sample treatment methodologies (such
as solid phase microextraction, extract and/or concentrate)
and suitable analytical techniques are essential to success-
fully detect contaminants and other interesting compounds
in very low amounts for food metabolomics (Markley et al.
2017; Reyes-Garc�es and Gionfriddo 2019).

In addition, because of the size and complexity of metabo-
lomics datasets, the identification of metabolites has become
one of the foremost bottlenecks in the entire workflow (Li

et al. 2013). Research efforts currently focus on improving
chemometric methods and chemometric data analytical strat-
egies in relation to data processing from high-throughput
datasets in metabolomics (Yi et al. 2016). More importantly,
several signals discovered in NMR and MS spectra belong to
metabolites that are not present in metabolomics databases
(Bingol et al. 2016), and the identification of “unknown” mol-
ecules significantly hinders the functional interpretation of
high-throughput metabolomics (Gaudêncio and Pereira
2015). Therefore, newly discovered metabolites should be
added into metabolomics databases, offering easy access for
rapidly identifying a large number of metabolites in various
biological conditions. Currently, various tools and resources
(almost 50 databases) are available to assist metabolite identi-
fication or annotation, providing diverse and often comple-
mentary functionalities (Barupal, Fan, and Fiehn 2018;
Marco-Ramell et al. 2018).

At present, there are no definitive or standardized operat-
ing procedures for every workflow step in metabolomics
research. In principle, typical metabolomics research consists
of several different parts or sections, which can be classified
in four major steps depending on the type of research
(untargeted or targeted), sample (solids, liquids, and gas),
separation instrument (GC or LC), and inspection instru-
ment (MS or NMR) (Cevallos-Cevallos et al. 2009).
Furthermore, some challenges remain in sample preparation,
data processing, and data interpretation (Gong et al. 2017),
especially when analyzing identical samples using different
analytical methods, which influence the data and potentially
result in erroneous discovery and contradictory conclusions
(Bla�zenovi�c et al. 2018).

Applications of metabolomics in food analysis

Several food quality and safety issues, including emergence of
novel food pathogens, adulteration of food, risk assessment of
genetically modified foods, and detection of chemical contam-
inants/pollutants, have been gaining increased public attention
to become one of the most important topics in food analysis
(Pinu 2015). With the growing demand for high standards in
food quality assurance, metabolomics has been developed to
comprehensively assess quality and safety aspects of foods,
providing valuable information for the quality and authenti-
city of food products (Aru et al. 2018) (Table 2).

Metabolomics in food safety control

During the critical steps of production, processing, trans-
port, and storage, foods may be contaminated with a large
number of foodborne causative agents, such as pathogens,
biotoxins, man-made physical and chemical toxicants (e.g.,
pesticides and metals), thereby contributing to foodborne ill-
nesses (Re�setar, Paveli�c, and Josi�c 2015). According to the
World Health Organization, unsafe foods may cause more
than 200 diseases ranging from diarrhea to cancers, in which
an estimated 600 million, i.e., almost 10% in the world, fall
ill after consuming contaminated food and 420,000 die every
year (Havelaar et al. 2015). However, due to the diversity of
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modern food components, the interconnected global food-
chain, and the distinction of hazardous matters, traditional
detection techniques commonly take weeks and need sub-
stantial biochemical analysis or may be inadequate in the
detection of biological and chemical contaminants (Re�setar,
Paveli�c, and Josi�c 2015). MS/NMR-based metabolomics,
which is preferred over standard approaches in modern
food analysis, has become the most important technique in
the detection and quantification of pathogens, environmen-
tal contaminants, banned external compounds, and natural
toxins (Castro-Puyana et al. 2017).

Metabolomics in the detection of microbial contamination
Despite exceptional efforts by food handlers, the adaptation
mechanisms of pathogens (e.g., spore formation, thermo-
stable bacterial toxins and mycotoxins, and biofilm produc-
tion) allow the survival and growth of foodborne pathogens

that contaminate foods at any stage from food production to
consumption (Re�setar, Paveli�c, and Josi�c 2015). More import-
antly, foodborne pathogens and/or their toxins cannot
dramatically change food flavor, texture, or appearance.
Consequently, microbial-related contaminants have become
the most frequently reported foodborne causative agents
(Sugrue et al. 2019), and numerous foodborne outbreaks have
highlighted the risks of foodborne diseases, resulting in the
development and implementation of technologies and pro-
grams (e.g., HACCP systems) to rapidly and sensitively deter-
mine food pathogens and biotoxins (Anderson et al. 2014).

Detection of food pathogens and spoilage microorganism
contaminants. With the globalization of food supply chain
and changes in food consumption patterns, several food-
borne pathogens (e.g., Salmonella spp., Listeria monocyto-
genes, Campylobacter jejuni, and Shigella spp.), spoilage
microorganisms (such as Pseudomonas spp., Acinetobacter

Figure 2. Schematic representation of metabolomics workflow for food analysis, which could be divided into four analytical procedures: sample collection, sample
preparation, sample detection, and data analysis (adapted from Cevallos-Cevallos et al. 2009; Bla�zenovi�c et al. 2018; Xu et al. 2014; Marshall and Powers 2017).
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spp. and Botrytis spp.), and novel foodborne pathogens have
emerged (Li and Zhu 2017). Traditional detection in laborato-
ries is still mainly dependent on conventional microbiological
methods with time-consuming culture-based techniques,
molecular techniques, and proteomics-based approaches, which
are expensive and labor-intensive (Garc�ıa-Ca~nas et al. 2012).

Considering the short shelf-life of food products, metabo-
lomics-based methods have been applied to identify a mass
of microbial biomarkers involving different levels of micro-
bial contamination, showing a great potential in the rapid
and reliable detection of microbial contamination during the
early stages (Pinu 2016). For example, proton-transfer-
reaction-MS (PTR-MS) was developed to determine micro-
bial volatile organic compounds (MVOCs) with real-time
analysis, providing a valuable tool for determining the real-
time evolution of volatiles produced by microorganisms in
food products (Alothman et al. 2017). In addition to
MVOCs, other metabolites have been identified to detect
pathogens. For instance, gas chromatography combined with
mass spectrometry (GC-MS) has been applied to character-
ize three important foodborne pathogens, E. coli O157:H7,
L. monocytogenes, and S. enterica, in which several potential
pathogen-specific biomarkers were identified, leading to the
rapid discrimination between clean (without interested
pathogens) and contaminated (with interested pathogens)
food samples (Jadhav 2019).

Microbial metabolomics may also be applied to elucidate
the effect of environmental factors on complex biological
systems (Xu et al. 2014; Chen, Zhao, Wu, Liu, et al. 2020).
To comprehensively elucidate the inactivation mechanism of
electrolyzed water, the metabolic profile changes of E. coli
and L. innocua against electrolyzed water perturbations have
been evaluated by multivariate data analysis of NMR data.
Overall, 36 metabolic compounds involved in a wide range
of biochemical pathways, including nucleotide and amino
acid metabolism, energy-associated pathway, osmotic modi-
fication, fatty acid biosynthesis, glutamate decarboxylase
(GAD) system, and the c-aminobutyric acid (GABA) shunt
have been characterized using NMR spectroscopy (Liu et al.
2017; Liu et al. 2018). Furthermore, following electrolyzed
water and ultrasound treatments, the metabolomics varia-
tions of E. coli ATCC 25922 in planktonic and adherent
states have been characterized by NMR spectroscopy. As a
result, 43 significant variable metabolites, involving in vari-
ous amino acids, organic acids, nucleotides and their deriva-
tives, were detected in two states of E. coli. Further pathway
analyses have shown that alanine, aspartate and glutamate
metabolism, glycolysis, pyruvate metabolism, and TCA (tri-
carboxylic acid cycle) were markedly altered in planktonic
culture, but to a less level in air-dried culture, in which
some changes in GAD and some shunts involving in mixed
acid fermentation and pentose phosphate pathway were
found for maintaining metabolic balance (Zhao, Zhao, et al.
2019). Therefore, metabolomics is promising in identifying
diverse metabolic shifts in various states of microorganism,
providing important information on pathogen behavior.

However, because microbes are significantly different in
terms of size, structure, and biochemical properties, it isTa
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difficult to develop a universal method for disposing bacter-
ial cultures during metabolomics analysis (Patejko, Jacyna,
and Markuszewski 2017). Furthermore, microbial metabo-
lites are generally complex, and the intracellular and extra-
cellular metabolites are difficult to separate and identify.
More importantly, metabolites are rather unstable and easily
disturbed during sample handling and processing. Therefore,
the current advance in microbial metabolomics is still not
ideal, and highly sensitive and reproducible analytical instru-
ments and proper sample treatment protocols are essential
to analyze the complexity of metabolites for a successful
metabolomics analysis (Markley et al. 2017).

Detection of microbial toxin contaminants. In general, food-
borne biotoxins can be classified into two categories: (1)
intrinsic foodborne biotoxins, associated with non-zoonotic,
non-microbial food adulterations, such as amatoxins, lectins,
and phytotoxins (Xu 2017) and (2) extrinsic foodborne bio-
toxins, in which bacterial endotoxins can be generated via
cellular autolysis, external lysis, or phagocytic digestion, but
bacterial exotoxins (such as enterotoxins, mycotoxins, neu-
rotoxins, and hemolysins) are directly released into the
extracellular space (Stoev 2015). Therefore, several toxins are
secreted or released into the extracellular environment dur-
ing pathogen growth, becoming the second most reported
causative agent of foodborne outbreaks. To guarantee food
safety, metabolomics has made great efforts in identifying
toxins at the earliest stage, where MS could profile metabo-
lites related to microbial contamination (Rodr�ıguez-Carrasco
et al. 2013) and NMR could directly determine microbial
toxins (Kleigrewe et al. 2012).

However, considering that some natural toxins are
extremely toxic (even lethal) at very low concentrations,
preparation methods should be further improved to allow
for a sensitive and high-throughput detection (Man et al.
2017). For example, prior to the application of HPLC-MS/
MS, the multiple antibody immunoaffinity column was used
to selectively extract seven toxins, increasing the linear range
of the determination and decreasing the detection limit to
lg/kg (Zhang, Hu, et al. 2016). Similarly, in the presence of
diethylenetriamine-N,N,N0,N00,N000-pentaacetic acid (DTPA),
detection limits as low as 0.38 fmol for saxitoxin in seafood
could be achieved by employing capillary electrophoresis-
inductively coupled plasma-MS (CE-ICP-MS) (He et al.
2017). Therefore, even though the maximum acceptable con-
centrations of some biotoxins in foods have been built, regu-
latory limits for new toxins in foods will continue to emerge
(Garc�ıa-Ca~nas et al. 2014).

Metabolomics in the detection of chemical contaminants
As human-made substances, xenobiotics (e.g., fungicides,
pesticides, antibiotics, and nanomaterials) can enter the food
chain through the atmosphere, soil, and water and have
adverse effects on living organisms even at low levels (Chen
et al. 2018). To control the emergence of hazardous com-
pounds, food safety laws have become a priority to sternly
regulate food production, processing, storage, and permis-
sible limits of xenobiotics. Metabolomics could quantitatively

and sensitively detect diverse groups of xenobiotics in differ-
ent food matrices in just one run (Castro-Puyana et al. 2017).

Metabolomics in the detection of veterinary drug residues.
Generally, veterinary drug residues are discovered in animal
tissue (meat or organs) or animal products (e.g., milk, eggs,
etc.), causing side effects in humans upon consumption (Rath
et al. 2019). However, there are rigorous policies and regula-
tions on the acceptable levels of veterinary drug residues in
foods (Alimentarius 2015). The use of illegal veterinary drugs
has become a major concern. To this end, new detecting
methods (e.g., metabolomics) have been developed to control
the illegitimate use of unknown drugs or mixtures of veterin-
ary drug residues in cattle by tracking changes of metabolites
in biological tissues (Kaufmann et al. 2015). For example, in
the assistance of a simple generic solid-liquid extraction step
and ultrasonic-assisted extraction, liquid chromatography
coupled with electrospray ionization and tandem mass spec-
trometry (LC-ESI-MS/MS) has been successfully used to
quantify and identify 115 veterinary drug and pharmaceutical
residues in animal-derived foods, such as milk powder, egg,
and fish tissue (Dasenaki and Thomaidis 2015).

Furthermore, antibiotics are often used to treat inflamma-
tory diseases or as growth promoters in cattle. Due to the
detrimental effects on human health and the latent emergence
of antibiotic resistant pathogens, the maximum residue limits
(MRLs) of antibiotics in foods are strictly controlled in several
nations by specific laws. Sensitive analytical instruments
should be developed to supply credible detections of multiple
antibiotics in foods. Tandem CE and MS has been applied to
determine fluoroquinolones in bovine milk, in which cipro-
floxacin, norfloxacin, and ofloxacin were quantified by cou-
pling CE and off-line CE-MALDI-TOF spectrometry
(Springer et al. 2015). Similarly, a targeted approach using
two-dimensional LC has been successfully used to analyzed
the presence of 20 antibiotic residues, including b-lactams,
aminoglycosides, amphenicols, quinolones and sulfonamides,
in dairy products such as powdered milk, commercial milk,
and raw milk (Wang et al. 2001).

Metabolomics in the detection of pesticide residues. The
wide use of pesticides or herbicides in agriculture has
attracted considerable attention because the presence of resi-
dues in foods constitutes a health risk (Raina-Fulton 2014).
“QuEChERS” (Quick, Easy, Cheap, Effective, Rugged, and
Safe), as a two-step sample enrichment and desalting
approach, has been commonly used in coupled with LC or
GC for small molecules detection (Gonz�alez-Curbelo et al.
2015), in which the combination between QuEChERS with
solid-phase-extraction (SPE) or solid-phase micro-extraction
(SPME) has been successfully employed for multi-residue
pesticide analyses in foods. For example, the QuEChERS
approach was optimized for simultaneously determining
mycotoxins and pesticides in coffee. As result, a total of 117
pesticides and 30 mycotoxins were simultaneously deter-
mined in raw coffee by LC-ESI-MS/MS without clean-up
(Reichert et al. 2018). Similarly, CE-MS/MS could be applied
to evaluate the presence of three phenyl urea herbicides,
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namely monuron, monolinuron, and diuron, in yam (Daniel
and do Lago 2019).

In addition, some banned substances, such as chemical
raw materials, dyes, steroid hormones, nitrofurans, and other
materials, are often applied in agriculture and food produc-
tion and frequently detected in tainted foods. An UPLC-MS/
MS approach with matrix solid-phase dispersion (MSPD) has
been used to analyze 10 steroid hormones in foods of animal
origin. The developed approach, which is highly sensitive and
reproducible, can rapidly determine trace residues of steroid
hormones in complicated food matrices with limits of detec-
tion of 0.01lg/kg (Fan et al. 2014).

Metabolomics in the assessment of food quality and
authenticity

Food quality and authenticity are closely related. While the
objective of food quality is able to guarantee the appropriate
organoleptic and appreciated characteristics of product, food
authenticity is linked to the origin of valuable foods that
exhibit special characteristics (Montero and Herrero 2019).

Metabolomics in the assessment of food quality
In general, the sensory perception of foodstuffs is a vital
aspect of food quality. Because of the complex character of
flavor components, several classified approaches, including
principal component analysis (PCA), orthogonal projection
to latent structures discriminant analysis (OPLS-DA), fisher
discriminant analysis (FDA), and other stoichiometry meth-
ods, may be tedious and time consuming (Rosso et al.
2018). An automatic preparative approach coupling LC with
solid phase extraction (SPE), i.e., HPLC-SPE HPLC, was
developed for analyzing the taste-active compounds in sweet
and licorice-like bitter tasting aniseed extracts. A total of
256 fractions were obtained, which were further investigated
by ultra-high performance liquid chromatography coupling
time-of-flight MS (UHPLC-TOF-MS) to identify the respon-
sible sweet and bitter compounds in aniseed (Pickrahn,
Sebald, and Hofmann 2014).

Additionally, food quality-related researches aim to assess
the effects of food processes on food compounds. For example,
two-dimensional LC was applied to compare the metabolic
profile in different aged red wines, in which the concentrations
of anthocyanins and other new related compounds in young
and aged red wines were comprehensively assessed, detected,
and identified (Willemse et al. 2015). Similarly, an untargeted
metabolomics method was used to differentiate volatile profiles
of grape juices based on the presence of diverse fungal patho-
gens, such as Botrytis cinerea, Penicillium expansum, Aspergillus
niger or A. carbonarius. The findings showed that B. cinerea
samples were relatively higher in 1,5-dimethylnaphthalene and
some unknown sesquiterpenes, while A. niger and A. carbonar-
ius samples were comparatively higher in 2-carboxymethyl-3-
hexylmaleic acid anhydride and P. expansum samples were
higher in c-nonalactone and m-cresol (Schueuermann et al.
2019). Therefore, metabolomics methods have been extensively
applied to assess the fingerprinting, chemical composition

(Cossignani et al. 2014), and taste quality of foods and bever-
ages such as white tea (Yue et al. 2019), green tea (Zhang, Wu,
et al. 2019), set-yogurt (Palama et al. 2016), and red and white
ginseng (Zhang, Jiang, et al. 2019).

Metabolomics in the evaluation of food authenticity
Adulteration of food masks quality defects by adding banned
components or inferior quality products, resulting in a health
risk for consumers (Cubero-Leon, Pe~nalver, and Maquet 2014).
Therefore, food authenticity is of utmost importance for food
industry, producers, distributors, and consumers in ensuring
nutritional value, origin, and productive processes (Kendall
et al. 2018). However, it is often challenging to differentiate
between adulterated and pure products by using conventional
sensory evaluation and quality indicators, such as iodine value
and saponification value of edible oils (Consonni and Cagliani
2010). With developments in analytical techniques, metabolo-
mics-based approaches could complement existing methodolo-
gies to effectively determine the discrimination potential
between adulterated and authentic foods and to trace geo-
graphical origin (Hou et al. 2015). For example, metabolomics
coupled with 2DLC has been used to analyze different types of
added compounds in milk, in which the processing and quality
parameters of milk powders were analyzed. The research find-
ings showed that monosaccharides were present in various
brands and types of milk powder (Ma et al. 2014). With separ-
ation techniques, high-resolution mass spectrometry (HRMS)
was developed to investigate the authenticity of foods with sig-
nificant improvements in resolving power, sensitivity, robust-
ness, extended dynamic range, mass calibration, and tandem
mass capabilities, making HRMS as an attractive, useful, and
reliable tool for the food metabolomics community (Rubert,
Zachariasova, and Hajslova 2015).

Furthermore, metabolomics has been used to evaluate the
authenticity of protected designation of origin (PDO), grant-
ing food products with a particular quality, including geo-
graphical origin, processing, and attractive organoleptic
characteristics. With LC-QTOF-MS, the adulteration of wine
in the Bordeaux region of France was investigated, in which
46 compounds from 9322 extracted compounds and four
major components of 39 wine samples were assessed to deter-
mine adulteration in wine regions (Lin et al. 2014).
Subsequently, a prediction model was generated to accurately
distinguish adulterated wines in terms of geographical origin
(Lin et al. 2014). Similarly, an UHPLCESI/QTOF-MS-based
method was applied to discriminate saffron authenticity and
traceability and PDO vs. non-PDO saffron products based on
chemical fingerprints. The results showed that anthocyanins
and glycosidic flavonols were optimum adulteration indica-
tors, while other flavonoids (principally free flavonols and fla-
vones), protocatechuic aldehyde, and isomeric forms of
hydroxybenzoic acid were used as indicators for discriminat-
ing PDO vs. non PDO saffron products (Senizza et al. 2019).

Metabolomics-based approaches have been widely used in
verifying the labeled ingredients of fruits (Hoffmann et al.
2017), rice (Huo et al. 2017), and vegetables (Erban et al.
2019), elucidating diversities in organic vs. traditional pro-
duction systems in wheat (Kessler et al. 2015), maize (R€ohlig
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and Engel 2010), peppers (Novotn�a et al. 2012), potatoes
(Shepherd et al. 2014), and white cabbage (Mie et al. 2014),
and assessing the origin of olive oil (Sales et al. 2017), vine-
gars (Chinnici, Dur�an-Guerrero, and Riponi 2016), wines
(D�ıaz et al. 2016), almonds (Prunus dulcis) (Solsona et al.
2018), cocoa beans (Hori, Kiriyama, and Tsumura 2016),
honey (Zuccato et al. 2017), coffee species (Souard et al.
2018), saffron (Senizza et al. 2019), and citrus fruit/fruit jui-
ces (Jandri�c et al. 2017), among others.

Metabolomics in the risk assessment of genetically modi-
fied food
Genetically modified (GM) crops possess considerable poten-
tial in improving the quality of life and reducing environmen-
tal effect. For example, GM crops may need less herbicide
and pesticide applications and less water consumption and
contain various health-promoting compounds and nutrients.
With the assistance of new genetic engineering tools (such as
CRISPR/Cas systems), novel genetically engineered (GE)
crops containing genomic modifications have been generated
without introducing foreign transgenes, making the cultiva-
tion of GM crops significantly increased in developing coun-
tries (Gao 2018). However, the undiscovered health risks of
GM foods remain a concern among consumers, and many
countries do not allow GM foods (Chao and Krewski 2008).
To protect consumer rights, it is important to assess the
unidentified addition of GM foods and/or food ingredients
into the food supply and evaluate the risk assessment of novel
foods by using metabolomics technologies (Stewart et al.
2018). For example, metabolomics has been applied to inves-
tigate transgenic rice, where the levels of tryptophan, linolenic
acid, 5-hydroxy-2-octadenoic acid, Pro-Met-Leu, and 2-(11Z-
octadecenoyl)-rac-glycerol reduced by 15%, 6%, 30%, 21%,
and 15%, respectively, and the levels of palmitic acid,
LPE16:0, 9, 10, 13-TriHOME, and phytosphingosine increased
by 16%, 44%, 25%, 50%, respectively, relative to those in
native rice samples (Chang et al. 2012). Therefore, the differ-
entiation between conventional foods, transgenic foods, and
genetically modified organisms (GMOs) has become a contro-
versial topic, in which untargeted metabolomics is routinely
used to differentiate genetic modification for safety assess-
ment in soybean (Garc�ıa-Villalba et al. 2008), potato
(Shepherd et al. 2015), barley (Kogel 2010), and wheat
(Shewry et al. 2007), providing reliable information on GMO
composition (e.g., metabolites and proteins) (Zhu et al. 2018;
Beale, Karpe, and Ahmed 2016).

Metabolomics in food traceability

Food traceability, defined as “from farm to fork,” is a rele-
vant topic in food analysis and closely linked to food qual-
ity, food safety, and human health (Kaufmann 2014).
Consumers not only demand food quality and food safety,
but also require food traceability, which is associated to the
capacity to interrelate identifiable entities chronologically
throughout the food chain. However, there is limited under-
standing of the temporal processes on food composition,

and multivariate statistics are used to comprehensively assess
chemical changes under different food treatments (e.g., heat
treatment, fermentation, and storage) (Gauglitz et al. 2018).
Metabolomics could differentiate food metabolite profiles
acorrding to genotype and growing conditions (such as cli-
mate, soil composition, fertilization, and irrigation), and
provide information on unintended effects during pretreat-
ment and processing, such as changes in nutrient compos-
ition, degradation of health-related compounds, and
formation of new compounds, supplying useful information
on the origin, composition, processing, and authenticity of
foods (Rubert, Zachariasova, and Hajslova 2015).

Currently, non-targeted analysis is the most common
method to assess changes in the metabolic profiles of foods
during food-processing, whereas targeted analysis is employed
to evaluate metabolic changes attributed to different enviro-
mental stresses or growth stages (B€undig et al. 2016). For
example, the non-targeted UHPLC-QTOF-MS approach was
applied to assess the phenolic profiles of three diverse proc-
essed tomato products. The findings showed that different
processing methods could significantly affect the nutrition
and health promoting potential of tomato products (Lucini
et al. 2017). Similarly, NMR-based metabolomics was used to
investigate and monitor the effects of vacuum impregnated
fish gelatin (FG) and grape seed extract (GSE) on metabolites
that determine fish quality during storage. A total of 42
metabolites were identified, in which 36 metabolites were
quantified. Some metabolites, such as choline and trimethyl-
amine oxide, were closely associated with freshness, while
organic acids were related to spoilage. More importantly, the
combination of FG and GSE could significantly reduce the
formation of undesirable metabolites such as trimethylamine
and histidine (Zhao, Zhao, et al. 2019).

Targeted and untargeted metabolomics have been applied
to analyze the effects of industrial processing strategies on
the metabolite composition of foods, including the effects of
blending and heating on Tiger nut (Cyperus esculentus L.)
milk (Rubert, Monforte, et al. 2017), carrot, tomato, and
broccoli (Lopez-Sanchez et al. 2015), the effects of storage
conditions on red wine (Arapitsas et al. 2016), fresh-cut let-
tuce (Garc�ıa, Gil, and Tomas-Barberan 2018), and banana
(Chen, Zhao, Wu, He, et al. 2020), the effects of different
energy levels on mung beans sprout (Chen et al. 2019), and
the effects of thermal processing on Brassica vegetables
(Hennig et al. 2014). Targeted and untargeted metabolomics
provide valuable information that address some of the fol-
lowing specific topics in food process industry, (1) the
mechanism by which the molecular composition of foods
changes during ripening, (2) the method by which improper
storage affects the molecular make-up (such as meat and
vegetables), and (3) the effect of food processing, such as
roasting type of coffee and brewing tea.

In summary, metabolomics approaches, especially non-
targeted fingerprinting, combined with sophisticated bioinfor-
matics analysis and mathematical modeling exhibit an
extreme power in assessing food quality, safety, and traceabil-
ity (Cavanna et al. 2018). However, the application of metab-
olomics in food analysis is still at an early stage due to the
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limitation in technology and bioinformatics, and then the
more robust, cheaper, and automated technologies, as well as
larger food databases should be further improved to draw
valid conclusions, therefore enlarging the application of food
metabolomics (Cubero-Leon, De Rudder, and Maquet 2018).

Combined use of metabolomics with other omics

Compared with single omics approaches, integrated omics
approaches have become increasingly popular in all aspects of
life science (Pinu, Beale, et al. 2019), in which metabolomics
can complement other omics methods (genomics, transcrip-
tomics, and proteomics) to provide correlations between
organismal response and phenotype at a given time point
(Jaeger et al. 2017), offering a more holistic molecular per-
spective to comprehensively study biological systems.
Recently, metabolomics coupled with genomics, transcriptom-
ics, and proteomics has been applied to investigate food and
nutrition domains, providing fast, accurate, and reliable tools
to address problems inherent to food technology, such as
food quality control and safety (Ferranti 2018), and the com-
plexity of post-harvest fruit physiology (Nham et al. 2015).

Omics techniques for foodomics

Foodomics is a discipline that investigates food and nutri-
tion domains as a whole to elucidate the connections among
food components, food safety, diet, health, and diseases via
integrating advanced omics technologies and biostatistics,
chemometrics and bioinformatics tools to improve consum-
er’s well-being, health, and knowledge (Figure 3) (Gilbert-
Lopez, Mendiola, and Ibanez 2017; Cifuentes 2009; Le�on,
Cifuentes, and Vald�es 2018). Currently, the main areas of
foodomics could be summarized as follows, (1) human
health, which can be further classified into food

consumption monitoring research and treatment/prevention
of diseases by improving human diet (Zotti et al. 2016), (2)
food resources, which focus on analyzing the food compos-
ition of animal and plant origins and defined by climate,
land, and cultural practices (Humpfer et al. 2015; Picone
et al. 2019), and (3) food processing, which characterizes the
effects of pre- and post-production processes on food prod-
ucts, such as growth conditions (such as feed, GMOs, chem-
icals and pesticides), packaging and storage strategies, and
safety and authenticity control (Acunha et al. 2016;
Martinovi�c, �Srajer Gajdo�sik, and Josi�c 2018).

Foodomics for assessing the relationship between food
bioactivity and health
Recently, foodomics has been applied to elucidate the compli-
cated relationships between food, nutrition and human health
at different molecular levels, and then provided information
for developing “nutraceuticals” and “functional foods” (Li, Li,
et al. 2019; Ibanez et al. 2013), or personalized therapeutic
interventions through tailored manipulations of dietary inter-
ventions (Braconi et al. 2018; Montero and Herrero 2019).
For example, to elucidate the in vitro gastrointestinal protect-
ive effects of Bee pollen (BP) against inflammatory bowel dis-
ease, metabolomics analysis by ultra-performance liquid
chromatography tandem with quadrupole time of flight-mass
spectrometry (UPLC-Q-TOF/MS) was performed to elucidate
the regulatory mechanism of BP extract on protecting cellular
metabolic pathways against DSS-induced Caco-2 cells metab-
olism disorders (Li, Li, et al. 2019). Similarly, a multi-omics
approach, integrating transcriptomics and metabolomics,
together with viability and cell cycle experiments, was applied
to research the anti-proliferative potential of Passiflora mollis-
sima seeds on HT-29 human colon cancer cells. As a result,
the foodomics enabled the identification of genes, involving
in polyamine and glutathione metabolism, or the inactivation

Figure 3. Application of foodomics in food analysis and nutrition research by integrating omics technologies and robust bioinformatics tools (adapted from Braconi
et al. 2018; Vignoli et al. 2019).
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of NUPR1 transcription factor, that might be associated with
the changes in intracellular ceramide concentations in
response to endoplasmic reticulum stress (Ballesteros-Vivas
et al. 2020).

Foodomics for elucidating food microbiota interactions
The complex ecosystem contains millions of commensal and
pathogenic microorganisms (forming the “microbiota”)
(Greer et al. 2016), which dynamically interact with the diet
and host, playing fundamental roles in fundamental physio-
logical processes, such as immunity, skin disorders (Maguire
and Maguire 2017), and neurodevelopmental alterations
(Kelly et al. 2017). With respect to microbial communities,
metabolites could be as mediators in nutrient and energy
exchange, cell-to-cell communication, and antibiosis (Xu et al.
2019), allowing the scientific community to (1) elucidate the
function of chemical exchange and communication among
members by foodomics, (2) link microbial community struc-
ture, dynamics, interactions, and metabolic functions, (3)
obtain answers on microbial diversity, output, resilience, and
succession, and (4) further understand microbic response to
abiotic and biotic stressors (Beale et al. 2017).

At present, meta-omics approach is conducive to consider-
ation of microbiota ecosystem as a holistic population struc-
ture, and the genes, transcripts, proteins, and metabolites of
microorganisms can be integrated via high-throughput global
analysis (Rowland et al. 2018). Specifically, metagenomics is
mainly used for comparing the composition of microbiota
between healthy and diseased individuals; however, metatran-
scriptomics has not been frequently adopted in gut micro-
biota analysis due to difficulties in determination and
extrapolation of short-term responses based on mRNAs.
Metaproteomics provides the strategy to link proteins with
given taxonomic groups, and metabolic profiling could gener-
ate a large number of information on metabolic phenotype
by selecting endogenous (from the host) and exogenous
(from the environment, such as microbiota and diet) mole-
cules (Rowland et al. 2018).

Foodomics for investigating other food-associated issues
Furthermore, foodomics approaches have become valuable
tools for investigating food microbiology and toxicology and
for providing data on (1) viability, adaptation, and survival
potential and mechanisms of detected bacteria, (2) real-time
detection and tracking of high risk pathogen subtypes and
microbiomes (Kovac 2019), and (3) qualitative and quantita-
tive information for toxins in foods (Berthiller et al. 2017).
For example, omics-based methods, e.g., proteomics with
matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (MALDI-ToFMS) and metabolomics
with GC-MS, have been used to detect three red meat
pathogens, including L. monocytogenes, S. enterica, and E.
coli O157:H7. As a result, species-level identification could
be obtained within 18 h for S. enterica and E. coli O157:H7
and 30 h for L. monocytogenes, providing a rapid detection
method for some important foodborne pathogens (Jadhav
et al. 2018). Therefore, omics-based techniques could

provide improved screening and subtyping tools for both
known and unknown pathogens (Forbes et al. 2017) and be
useful in pathogen detection, foodborne illness outbreak
detection, microbial source tracking analyses, antimicrobial
resistance, and product shelf-life, providing a detailed infor-
mation on how bacteria or pathogens survives in the envir-
onment and discovering new targets for limiting serious
infections (Cook and Nightingale 2018).

Omics fusion for integrative analysis of omics data

However, due to the depth or coverage obtained from differ-
ent omic technologies, it was difficult to integrate the differ-
ent levels of information. For example, compared with the
high amount of proteins, phosphorylation sites or genes
obtained from proteomics, phosphoproteomics or transcrip-
tomics analyses, low number of identified metabolites has
been considered to be the key bottleneck for metabolomics.
Furthermore, with the increase of available multiple omics
data, data processing has become more and more important
in understanding the biological mechanisms responsible for
variations in the observed metabolomic profiles (Broadhurst
and Kell 2007). To the end, it should be further improve-
ments in computational techniques for effective storage,
integration and utilization of prior information, identifica-
tion and accurate quantification of metabolites, “multi-
omics” data integration, and pathway visualization, in which
various databases, software tools, and methods are now
freely accessible to assist with integrating multi-omics data
sets (Broadhurst and Kell 2007; Subramanian et al. 2020).

Currently, before the analysis and interpretation of differ-
ent omics data, a series of specialized tools and approaches
were developed to integrate different omics data sets (Kuo,
Tian, and Tseng 2013), including: (1) statistical approaches,
using orthogonal two-way projection to latent structures
(O2PLS) and its variant (OnPLS) to analyze systematic vari-
ation (Trygg and Wold 2003; L€ofstedt and Trygg 2011); (2)
unsupervised methods, using machine learning algorithms to
identify patterns without referring to known results (Noor,
Cherkaoui, and Sauer 2019); (3) supervised machine learn-
ing, using a set of input attributes to predict the target value
(Franzosa et al. 2019). Among of them, Omics Fusion, an
extendible, web-based platform for comprehensively analyz-
ing omics data from three classical fields, transcriptomics,
proteomics, and metabolomics, has been developed to offer
simple data administration, such as automated input of
spreadsheets, together with connections to other platforms,
such as EMMA (Dondrup et al. 2009), MeltDB (Kessler et al.
2013), or QuPE (Albaum et al. 2009). More importantly,
Omics Fusion does not only focus on networks and pathways
(e.g., Cytoscape (Shannon et al. 2003) or iPEAP (Sun et al.
2014)) or on a specific organism. Omics Fusion provides
numerous visualization methods for single and multi-omics
data and offers a collection of new and established tools and
visualization approaches to extract omics data, validate results,
and understand how to modify experiments to achieve new
findings (Brink et al. 2016). However, because of inherent
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data diversities, the integration of multi-omics platforms is
still an ongoing challenge (Patt et al. 2019).

In summary, foodomics has become the most advanced
methodology in food risk evaluation, security control, food-
borne outbreak detection, bioactive compounds assessment
on health, and health improvement through diet manipula-
tion (Putignani and Dallapiccola 2016), but its rapid assess-
ment and integration still prevented by technical and
biological issues, including (1) the complex and heteroge-
neous of biological data, (2) the limited repeatability of the
results of transcriptomics, proteomics, and metabolomics
due to the heterogeneity of available analysis tools, (3) the
absence of normal data formats for both omics data and
metadata, and (4) the lack of effective softwares for omics
data integration and interpretation (Cambiaghi, Ferrario,
and Masseroli 2017). To obtain a deeper comprehension of
how diet, microbiota, and interindividual variability effect-
ively impact phenotypic alterations between health and dis-
ease, it is necessary to further develop harmonization and
mormalizaiton of samplings, implement analysis techniques,
establish standardized animal models, improve biological
databases with functional annotations, and develop novel
powerful exploiting tools (Braconi et al. 2018; Montero and
Herrero 2019).

Conclusion and future outlooks

Corresponding to the fast development of analysis techniques,
metabolomics has achieved great progress with exciting find-
ings linking to biological systems and food analysis, in which
it is possible to analyze more than 1000 metabolites in a sin-
gle run or utilizing an integration of various analytical meth-
ods, showing great potential in diverse fields of life sciences.
Like any other omics area, however, the application of metab-
olomics approaches in food security, food quality, and food
traceability remains far from achieving its maximal potential
(Pinu, Beale, et al. 2019) and suffers from some bottlenecks,
including sensitivity and compound identification limitations
(Pinu, Beale, et al. 2019), appropriate statistical approaches
for the huge amount of data (Salari et al. 2018), and metabol-
ite coverage and function (Alseekh and Fernie 2018).
Furthermore, although the undeniable reliability of tools
reviewed, metabolomics faces challenges in practical applica-
tions, mainly in the area of data integration, information
database, and chemometrics to support a comprehensive
assessment of experimental data and a deeper comprehension
of how internal metabolic pathways or biological processes
change in foods (Cambiaghi, Ferrario, and Masseroli 2017).

Consequently, it is essential to enhance the sensitivity
and precision of instruments to enlarge the coverage of
metabolites and increase data quality with the combination
of different analytical methods and platforms (Begou et al.
2017). For example, the application of new technology as
ion mobility separation (IMS) could provide a new dimen-
sion for chromatography and MS, allowing the monitoring
of quality attributes during food processing through in situ
automatic sampling and providing important information to
assess losses of food characteristics and behavior of

contaminants and toxic substances during food processing
(L�opez-Ruiz, Romero-Gonz�alez, and Frenich 2019). In add-
ition, powerful statistical software tools should be further
developed to handle large amounts of experimental data for
effectively assessing the security of new or traditional proc-
essing technologies in food systems (Liu, Wu, and Chan
2019). As for targeted metabolomics, the automation, rapid,
and accuracy of entire metabolite quantitation should be
further improved. Metabolite libraries of MS/NMR software
and web servers need to continually enlarge by adding more
metabolites, establishing and recording more reliable stand-
ards, mining data from the literature, and elucidating struc-
tures of new metabolites (Bingol 2018). However, for
untargeted metabolomics, several procedures should be fur-
ther refined to control analytical data quality and develop
standardization of protocols for meaningful, accurate, and
precise management of untargeted studies in food analysis
research (Dudzik et al. 2018).
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