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Abstract
Mammalian gelatin is extensively utilized in the food industry because of its
physicochemical properties. However, its usage is restricted and essentially pro-
hibited for religious people. Fish gelatin is a promising alternative with no reli-
gious and social restrictions. The desirable properties of fish gelatin can be signif-
icantly improved by various methods, such as the addition of active compounds,
enzymes, and natural crosslinking agents (e.g., plant phenolics and genipin),
and nonthermal physical treatments (e.g., ionizing radiation and high pressure).
The aim of this study was to explore whether the properties of fish gelatin (gel
strength,melting or gelling temperature, odor, viscosity, sensory properties, film-
forming ability, etc.) could be improved to make it comparable to mammalian
gelatin. The structure and properties of gelatins obtained from mammalian and
fish sources are summarized. Moreover, the modification methods used to ame-
liorate the properties of fish gelatin, including rheological (gelling temperature
from 13–19◦C to 23–25◦C), physicochemical (gel strengths from ∼200 to 250 g),
and thermal properties (melting points from ∼25 to 30◦C), are comprehensively
discussed. The relevant literature reviewed and the technological advancements
in the industry can propel the development of fish gelatin as a potential alterna-
tive to mammalian gelatin, thereby expanding its competitive market share with
increasing utility.

Abbreviations: BHT, butylated hydroxytoluene; BSE, bovine spongiform encephalopathy; DSC, differential scanning calorimetry; FAO, Food and
Agriculture Organization; GCP, gelatin collagen peptide; HPP, high-pressure processing; MCP, marine collagen peptide; MTG, microbial
transglutaminase; MW, molecular weight; NaCl, sodium chloride; PUFA, polyunsaturated fatty acids; RSM, response surface methodology; SEM,
scanning electron microscope; TBA, thiobarbituric acid; TBARS, thiobarbituric acid reactive substances; TEM, transmission electron microscopy;
UVRT, ultraviolet radiation technology.
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1 INTRODUCTION

Gelatin, frequently utilized as a gelling agent in food sys-
tems, has multiple functions. It is usually applied in jelly
production, clarification of fruit juice, processing of con-
fectionary, soup, and dairy, as well as in encapsulation,
edible films, glue, and photography (Huang et al., 2020).
Gelatin is predominantly generated from the skin and col-
lagen of connective tissues obtained from mammals. It is
thermo-reversible with a melting point lower than body
temperature that contributes to its well-known “melt-in-
the-mouth” property, as collagen has a unique property
of forming a gel when dissolved in water (Norziah et al.,
2009). In addition, gelatin has diverse applications in the
food industry, particularly in associationwith the enhance-
ment of elastic character, consistency, and stability of food
products (Wu et al., 2020). It can also provide biological
active peptides after protease hydrolysis (Park et al., 2020).
Lastly, it is widely used as an important hydrocolloid and
gelling and thickening agent in food products.
The global annual production of gelatin is∼ 326,000 tons

(Norziah et al., 2009). Porcine skin (46%) is the biggest
source of gelatin, while the skins (29.4%), bones (23.1%),
and miscellaneous parts (1.5%) from bovine sources are
also important contributors to worldwide gelatin pro-
duction (Laura et al., 2020). However, religious and
social issues, as well as the risk of bovine spongiform
encephalopathy (BSE), have limited the market demand
for bovine and porcine gelatin in recent decades. The pos-
sible alternatives for gelatin from mammalian sources are
freshwater andmarine fishes, especially their skins, bones,
and fins, which remains unexplored (Karim&Bhat, 2009).
Moreover, the Food and Agriculture Organization (FAO)
estimated that there was an annual fishery waste of 20
million tons worldwide, accounting for 25% of the total
fishery production (Gómez-Guillén et al., 2011). Unfortu-
nately, such wastes of fish processing are not utilized prop-
erly resulting in environmental pollution (Zhang et al.,
2020b).
Fish gelatin contributes to an extremely limited market

share as opposed to the gelatin obtained from the bovine
and porcine sources. However, the number of fish species
used for gelatin extraction expanded recently, as shown in
the overview of a few important species in Table 1. Insuf-
ficient availability of the raw materials for fish gelatin,
inferior gelatin quality, as well as poor rheology, odor, and
bloom strength are important factors hindering the

industrial development of fish gelatin worldwide
(Karayannakidis & Zotos, 2015). Moreover, price volatility
and poor control of the intrinsic quality traits of fish
gelatin further limit the growth of this sector (Karim &
Bhat, 2009). However, recent studies have revealed that
improvement in the physicochemical and functional
attributes of fish gelatin can be achieved by adjusting the
contents of the coenhancers (i.e., salts, sugars, enzymes,
magnesium sulfate, formaldehyde, glycerol, and transglu-
taminase) to similar levels as those of mammalian gelatin
(Cho et al., 2005). The commonly discarded collagen-rich
fishery waste can not only be utilized to increase its
commercial value and create new business opportunities
for the food industry but can also promote environmental
sustainability by reducing its harmful effects (Karayan-
nakidis & Zotos, 2015). It is estimated that global fish
production will increase to 186 million tons in 2030, which
certainly will weigh on the environment (Alfaro et al.,
2015; The World Bank, 2013). Therefore, the investigation
of intrinsic physicochemical properties, development of
improved extraction methods, and studying the effect of
processing conditions (such as pH, temperature, and salt
concentration) on the quantity and quality of gelatin are
urgently required. Moreover, the other research areas that
need to be explored are also discussed in this study.
Therefore, this review (1) compares the intrinsic physic-

ochemical properties of the mammalian gelatin to the fish
gelatin, (2) discusses the current developments to improve
extractionmethods and processing conditions of the quan-
tity and quality of gelatin, and (3) expounds the increasing
utility of fish-based gelatin in the industry as a result of the
technological advancement.

2 COMPARISON BETWEEN
PHYSICOCHEMICAL PROPERTIES OF
MAMMALIAN AND FISH GELATIN

Gelatin has a high degree of flexibility in its polypeptide
chains. The functional quality of gelatin largely depends
upon its molecular character; it is particularly related to
the species-specific amino acids and their distribution (Jel-
louli et al., 2011), especially those of the amino residues
(alanine [Ala]; phenylalanine [Phe]; glutamic acid [Gln];
cysteine [Cys]; isoleucine [Ile]; tyrosine [Tyr]; lysine [Lys];
and arginine [Arg] residues) and imino-acids (glycine
[Gly]; serine [Ser]; threonine [Thr]; aspartic acid [Asn];
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TABLE 1 Classification of fish species used for gelatin extraction

Type Name Main sources References
Warm-water fish Catfish Asian; European countries; North

America
Rawdkuen et al. (2013)

Megrim Northeast Atlantic Hanjabam et al. (2015)
Nile perch Africa Hanjabam et al. (2015)
Carp (Rohu) India Hanjabam et al. (2015)
Shark Japan, India Hanjabam et al. (2015)
Snapper (Threadfin bream) Thailand Hanjabam et al. (2015)
Tuna India Cho et al. (2015)
Tilapia Thailand Rawdkuen et al. (2013)
Triggerfish Indo-Pacific Jellouli et al. (2011)
Lizardfish Thailand Wangtueai and Noomhorm

(2009)
Cold-water fish Pollock North America and the United Kingdom Avena-Bustillos et al. (2006)

Rainbow trout Asia and North America Tabare (2010)
Haddock North Atlantic Ocean Avena-Bustillos et al. (2006)
Cod Northern Pacific Åsli and Mørkøre (2012)
Salmon North Atlantic, Pacific Ocean Avena-Bustillos et al. (2006)
Hake (Pollachius virens) North Atlantic Ocean Casanova et al. (2020)

methionine [Met] and histidine [His] residues, etc.), as
shown in Table 2 (Leuenberger, 1991).
An important property of gelatin is its thermal

reversibility due to the nonrandom presence of imino
acids (i.e., proline or hydroxyproline) in their sequence,
which is a unique trait compared to other gel-forming
agents, such as proteins and polysaccharides (Limp-
isophon et al., 2009; Zhang et al., 2020b). The presence
of high molecular weight (MW) polypeptides in gelatin,
along with its gelling and thickening properties, imparts
effective hydrocolloid abilities (Kaewruang et al., 2013). In
contrast to other hydrocolloids, which mostly consist of
polysaccharides, gelatin is composed of easily digestible
proteins and essential amino acids (except for tryptophan)
(Mariod & Fadul, 2013).
The manufacture of gelatin from nonmammalian

sources has been increasing in recent years (Núñez-Flores
et al., 2012). Rawdkuen et al. (2013) found that gelatin
obtained from fisheries accounted for almost 1.5% of the
global production in 2007 – twice the contribution of fish-
eries since 2002. Gelatin can be produced from multiple
fish species; however, a few species are preferably used for
its production (listed in Table 1). Furthermore, gelatins
produced from different parts of the fish body have been
evaluated for their functional properties (Wasswa et al.,
2007). For example, Nile perch gelatin showed similar
properties to that of mammals as compared to the gelatin
obtained from cold-water fish skin (Muyonga et al., 2004).
The gelatin from Nile perch skin contains greater content
of polypeptides and β peptides than that from its bone.

Additionally, the gelatins from both sources contained
α peptides of low MW. In general, the yield of gelatin
from Nile perch skin was higher than that from bone,
and the functional properties of skin gelatin were also
better than the bone counterpart. However, it has been
demonstrated that certain pretreatments could be used to
prepare bone gelatin with superior functional attributes
(Wasswa et al., 2007). Particularly, the pretreatment of
liming significantly improves the functional characteris-
tics of bone gelatin as it regulates the desired alkalinity
without causing the collagen to swell (Jamilah et al., 2011).
The physicochemical and functional properties of the fish
gelatin enable it to be a superior alternative to bovine
gelatin. Therefore, gelatin acquired from these fishes is
a potential alternative ingredient for the food industry
(Sai-Ut et al., 2012).
Apart from the solubility, color, odor, and taste, other

important factors responsible for the quality of gelatin
are thermal stability (melting enthalpies and gelling abil-
ity) and gel strength, both of which are correlated with
the rheological, emulsification, foaming, and film-forming
properties of gelatin (Rawdkuen et al., 2013). Particu-
larly, its bloom value can be classified as either low
(<150 bloom),medium (150−220 bloom), or high (220−300
bloom). Moreover, gelatin with a high viscosity is consid-
ered commercially preferable and hence sells at a higher
price (Karim & Bhat, 2009). Lastly, gelatin is also one of
the most researched biopolymers due to its film-forming
ability, which is useful in protecting foods from moisture
loss, limiting exposure to light and oxygen, and preparing
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TABLE 2 Amino acid compositions in some fish gelatin compared to mammalian gelatin

Composition

Fish gelatin Mammalian gelatin
Alaska
pollock
skin

Salmon
skin

Catfish
skin

Leather
jacket

Reef cod
skins

Rohu
skin Crap skin Tuna skin Pork skin

Bovine
skin

Amino acid Ala 10.38 12.49 12.40 9.5 9.3 1.16 3.54 11.4 11.39 11.2
Arg 5.18 5.06 5.00 5.8 5.3 4.93 4.75 5.5 5.19 4.9
Asx 5.21 5.12 4.59 ND ND 2.56 2.61 42.5 4.63 3.01
Cys 0.14 0.08 0.10 ND ND ND ND ND 0.16 ND
Glx 7.17 7.25 7.22 ND ND ND ND 7.4 7.27 ND
Gly 35.74 35.54 34.01 33.3 33.6 24.93 20.99 33.5 32.34 27.69
His 0.80 0.87 0.60 6 8 0.71 0.03 0.6 0.48 0.03
Hcy 0.16 0.12 0.09 ND ND ND ND ND 0.02 ND
Hyl 0.61 0.76 0.58 ND ND 8.90 7.78 0.5 0.68 11.26
Ile 1.07 0.97 1.17 1.6 1.9 0.15 0.40 0.9 1.01 0.98
Leu 2.10 1.83 2.09 2.6 3.1 3.21 1.40 2.1 2.58 1.73
Lys 2.78 2.47 3.10 1.5 1.2 2.83 4.20 2.7 2.83 3.29
Met 1.13 1.00 0.49 1.3 1.4 2.43 3.94 1.1 0.54 1.43
Phe 1.20 1.27 1.30 1.0 1.1 1.11 0.66 1.2 1.44 1.20
Ser 5.85 4.73 3.61 5.1 5.4 4.69 4.34 4.1 3.07 3.01
Thr 2.68 2.55 2.60 2.2 2.7 4.41 4.19 2.3 1.69 2.06
Tyr 0.24 0.13 ND 0.8 0.8 0.48 0.21 0.3 0.39 0.08
Val 1.67 1.41 2.19 2.6 2.5 2.62 2.14 2.3 2.30 1.88

Imino acid Hyp 5.30 5.56 7.72 8.0 8.1 11.59 11.72 8.3 8.53 11.26
Pro 10.09 10.79 11.14 9.4 9.9 8.9 7.44 11.7 13.47 12.44

Reference Avena-Bustillos et al. (2006) Renuka et al. (2019) Ninan et al. (2010) Haddar et al.
(2012)

Vijayakumar
et al. (2018)

Ninan et al.
(2010)

biodegradable films for the development of active pack-
aging material, which can be enriched with antioxidants
and/or antimicrobial substances (Huang et al., 2020).
Mammalian gelatin has comprised amajor proportion of

the food and pharmaceutical industries over the past sev-
eral decades stemming from its outstanding film-forming
abilities and low melting point. Furthermore, owing to
the hydrophilic properties of gelatin films, it exhibits high
resistance against oxygen at low relative humidity (Jong-
jareonrak et al., 2010). This characteristic feature is ideal
and necessary, as high humidity makes gelatin films per-
meable to oxygen (Byun et al., 2012). Contrastingly, the
gelatin film produced from carp skin has superior char-
acteristics as it has significantly lower oxygen and water
vapor permeability than from that of mammalian skin
(Shyni et al., 2014).
The chemical, physicochemical, and functional prop-

erties of fish gelatin have been elaborated on previously
(Karim & Bhat, 2009). However, a precise comparison of
the differences between the properties of mammalian and
fish gelatins is warranted. The comparative analysis will
aid in optimizing the processing conditions and manufac-
turing methods of superior-quality fish gelatin. Therefore,

the physicochemical properties, includingmelting temper-
ature, sensory properties (primarily the odor), viscosity,
and textural properties (bloom strength), of mammalian
and fish gelatin were compared in this review, as shown
in Table 3.

2.1 Melting temperature

The major difference between the gelatins obtained from
either mammalian or fish sources is their gelation tem-
peratures. Moreover, variations in the gel melting and gel
setting temperatures between the gelatin from cold- and
warm-water fishes have been noted. The gelatin from cold-
water fishes requires low gel melting and gel setting tem-
peratures, primarily due to its high hydrophobicity and
low content of imino acid (proline and hydroxyproline);
these have been linked with a lower tendency of forming
an intermolecular helix (Gilsenan & Ross-Murphy, 2000).
Although the amino acid profiles of gelatins from different
mammalian sources are always constant, those fromdiffer-
ent fish species usually vary. In the mammalian gelatins,
glycine accounts for ∼one-third of the total amino acid
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TABLE 3 Physical properties of various fish gelatin and mammalian gelatin

Physical property

Class Type
Gel strength
(Bloom, g)

Gelling temperature
(◦C)

Melting point
(◦C) Reference

Fish gelatin Hemiramphus far ND 19.5 25 Wu et al. (2020)
Cod 177.84 21.2 27.4 Park et al. (2021)
Catla 264.6 13.7 23.3 Chandra and Shamasundar

(2015)
Red snapper 0.77 16.00 26.00 Jeya Shakila et al. (2012)
Grouper 0.79 16.00 25.00 Jeya Shakila et al. (2012)
Shark About 206 About 20.8 About 25.8 Shyni et al. (2014)
Rohu About 124 About 13.8 About 18.2 Shyni et al. (2014)
Croda About 440 About 17.46 About 25.56 Norziah et al. (2009)
Carp About 200 About 19 ND Shyni et al. (2014)
Catfish About 276 17 25 Liu et al. (2008)
Croaker 170 g ND 20.36 Koli et al. (2012)
Perch 150 g ND 19.23 Koli et al. (2012)
Tilapia 211 g 17.7 25.8 Sinthusamran et al. (2017)

Mammalian gelatin Bovine 216 g 23.8 33.8 Cho et al. (2005)
Porcine 295 g 25.6 36.5 Cho et al. (2005)

Note: ND, not detected.

residues, whereas proline and hydroxyproline together
constitute∼one-fifth and alanine alone accounts for∼one-
ninth (Correia et al., 2013). Overall, the content of these
four amino acids in the mammalian collagen contributes
to ∼two-thirds of the total amino acid residues during the
manufacturing of mammalian gelatin (Hanjabam et al.,
2015). By contrast, the fish collagens with remarkable vari-
ation in amino acid composition have low proline and
hydroxyproline content and high serine and threonine
contents. Similarly, in a differential scanning calorimetry
(DSC) study, Norziah et al. (2009) reported considerably
lower melting points of gelatins obtained from cod skin
than those prepared from bovine and shortfin scad.
The functional properties of fish gelatin with low melt-

ing temperatures vary from thosewith highmelting points.
Chiou et al. (2008) proved that the tensile strength and
elongation value of the gelatin film prepared from pollock
and salmon are lower than that from mammals (bovine
and pig), which is related to the reduced denaturation of
the fish gelatin film. The melting temperatures and tensile
properties of fish gelatin films are also remarkably influ-
enced by glutaraldehyde crosslinks. In addition, gelatin
films extracted from cold-water fish showed lower water-
vapor permeability as compared to those fromwarm-water
fishes and mammalian sources (Avena-Bustillos et al.,
2006). Notably, the reduced water vapor permeability of
fish gelatin films contributes to the decrease in water loss
of refrigerated and frozen foods.

2.2 Sensory properties

A fishy odor is the most important challenge associated
with fish gelatin, which limits its utility. The problem of
fishy odor is quite prominent in the case of salmon skin
(Tongnuanchan et al., 2014). Gelatin from salmon skin is
rich in proteins and essential fatty acids because salmon
skin contains high amount of protein (30−35%) as well as
omega-3 polyunsaturated fatty acids (PUFAs), particularly
eicosapentaenoic acid and docosahexaenoic acid (Ferraro
et al., 2010). On the one hand, the PUFAs in fish gelatin
are beneficial for health; on the other hand, PUFAs are
susceptible to lipid oxidation, which ultimately leads to
the production of fishy volatiles (Orrawan & Worapong,
2012; Sae-Leaw et al., 2016). The primary products of oxi-
dation (lipid hydroperoxides) are degraded into secondary
lipid oxidation metabolites, including alcohols, aldehydes,
ketones, and furans, which is usually indicated by the
thiobarbituric acid (TBA) content. Gelatin with a TBA
content higher than 8 mg/kg is not suitable for human
consumption (Kristinsson & Hultin, 2004). Moreover, the
distinguishable fishy odor renders them inferior to bovine
gelatin in organoleptic qualities.
Despite this, some studies reported that the gelatins

obtained from fish sources were superior to those man-
ufactured from mammalian sources. For instance, Choi
et al. (2000), Jayathilakan et al. (2012), and Shyni et al.
(2014) conducted comparative studies on gelatins prepared
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from fish, bovine, and porcine sources concerning their
physicochemical and functional properties. They collec-
tively found that the odor scores of skin gelatins obtained
frombovine and porcine sourceswere greater than those of
fish gelatin, which indicated that the organoleptic qualities
(off-odor and aroma) of the former twowere inferior to the
latter. Moreover, Cho et al. (2015) reported the enhanced
melting point, as well as an increased release of desirable
flavor and aroma in flavored fish gelatin desserts when
compared to those of the same product prepared from pork
gelatin with equal bloom strength.
Off-odor compounds have also been reported from

marine collagen peptide (MCP) and gelatin collagen pep-
tide (GCP). In a recently published report, methional,
as well as dimethyl tri-and tetra-sulfides, were regarded
as the characteristic off-odor compounds of MCP and
GCP (Limpisophon & Schleining, 2017). In addition, the
sulfurous, cool/refreshing, and medicinal odors of some
unknown compounds in MCP and GCP were also associ-
ated with the formation of off-odors. Therefore, the pro-
cessing conditions largely affected the production of these
volatile flavoring compounds. Nonetheless, deodorization
could be performed to remove the off-flavors. However, an
earlier contradictory publication reported that activated-
carbon treatment could not eliminate the off-odor com-
pounds from MCP and GCP during the manufacturing
process (Sae-leaw & Benjakul, 2015). The most impor-
tant off-odor producing compounds are mainly sulfur-
containing compounds, such as methanethiol, as well
as dimethyl di-, tri-, and tetra-sulfides, which tend to
increase during the manufacturing process (Limpisophon
& Schleining, 2017). In addition, bacteria can also ferment
some of the flavor-producing organic compounds. For
example, Lactobacillus plantarum has been used to effec-
tively deodorize the off-odor of MCP (Yazdimamaghani et
al., 2015).

2.3 Viscosity

Viscosity is an important functional property for process
control. Gelation of a gelatin solution dually depends upon
its viscosity in water and the temperature. Whether fish
gelatin possesses both gelling and nongelling properties
depends on the origin of the fish species, habitat, and
amino acid composition. The gelatin prepared from cold-
water fishes demonstrates a high viscosity, which is not
a desirable attribute in many applications (Chiou et al.,
2006).
As the concentration of hydrophobic and hydroxylated

amino acids, gelatin viscosity, and distribution of MW
are dependent on the specific fish species, the quality of
foods that uses gelatin is also affected accordingly. Lim

andMohammad (2011) reported that the gelatins prepared
from different fish sources exhibited variations in their
rheological, physicochemical, and structural properties. In
another study, Gómez-Guillén et al. (2002) reported that
gelatins with higher gelling ability and thermostability
were obtained from flat-fishes (sole and megrim), com-
pared to those from cold-water fish species (cod and hake).

2.4 Textural properties

A technologically important character of gelatin is its
bloom strength. The composition of amino acids and their
molecular distribution play a key role in the gelatin-based
gel strength as well as its melting point. For instance, the
orientation of the R-groups in the amino acids of intact col-
lagen and gelatin-based gels provides strength to the triple
helix structures. In addition, a high quantity of hydropho-
bic amino acids also affects the rigidity, though less so
than in mammalian gelatin which generally has better
gel strength than fish gelatin. Interestingly, the collagen
obtained from warm-water fishes contains higher amino
acids than that from cold-water ones (Boran et al., 2010).
Water temperature plays a crucial role in the process-

ing of fish gelatin, as the use of either warm or cold water
will result in different gel strengths. Similarly, the stor-
age temperature of fish skin may also lead to disparate
gelatin strength. Fernández-Dıáz et al. (2003) revealed that
gelatin derived from skin stored at −12◦C had weaker gel
strength than that prepared from fresh skin. In addition,
the gelling and melting enthalpies of dried channel catfish
skin gelatin were distinctly different from gelatin prepared
from frozen skin.

3 STRATEGIES TO IMPROVE THE
FUNCTIONALITY OF FISH GELATIN

The physicochemical, functional, technological, and sen-
sory attributes of gelatin prepared from beef, pork, and/or
fish are determined by the method of preparation used
as well as the intrinsic character of the collagen from
the respective sources (Hu et al., 2020). There are two
approaches generally adopted to prepare gelatin commer-
cially. The first is the alkaline process in which raw mate-
rials are pretreated with a cold alkaline solution for sev-
eral weeks and then extracted at a neutral pH. Alka-
line pretreatment causes the de-amidation of aspartic acid
and glutamic acid, thereby increasing their concentra-
tions (Eysturskarð, Haug, Ulset et al., 2009). The second
approach is acid treatment, which is the primary means
for gelatin preparation and the onlymeans for pork gelatin
preparation. The acid treatment method involves pretreat-
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ing the raw material for several hours and then extract-
ing it with mild hot water under acidic conditions (pH
4.0) (Zhou et al., 2020). Consequently, two different types
of gelatin are obtained. These are commercially known
as type-A and -B gelatins, with isoelectric points at pH
8−9 and pH 4−5, respectively (Gómez-Guillén et al., 2011).
In addition, several modifications, and combinations of
the mentioned two processes have also been adopted to
attain the required product attribute, process efficiency,
and gelatin quality.

3.1 Understanding gelatin formation

3.1.1 Collagen-based gelatin

During the process of gelatin formation from collagen, acid
and/or alkaline hydrolysis irreversibly ruptures the cova-
lent bonds of the fibrous structures of collagen via a mild
degradative process. Hydrochloric acid [HCl], sulfuric acid
[H2SO4], phosphoric acid [H3PO4], calcium hydroxide
[Ca(OH)2], and sodium hydroxide [NaOH] are extensively
utilized to produce gelatin from mammals (Ninan et al.,
2010). First, the soluble collagen upon denaturation in hot
water (40◦C) produces one, two, or three random gelatin
molecule chains from the destruction of the triple-helical
structures, predominantly because of the breakdown of
hydrogen- and electrostatic-bonds, and hence produces a
high viscosity solution. Second, the cooling of this solution
gives rise to crosslinks and/or produces junction zones that
partially form ordered triple-helices. Finally, the purifica-
tion and drying of gelatin are performed. In the aging of
the gelatin solution, water is extracted from the linear and
flexible parts of the three-dimensional protein network,
causing it to collapse into a rubber-like film that ultimately
vitrifies via hydrogen bonding and forms crosslinks upon
drying. In short, the gelling process involves the struc-
tural rearrangement of the triple helix structure of col-
lagen, the transition at a certain temperature called the
gelling point, and the melting of protein structures at the
denaturation point of the structure. Especially, the gelling
and melting enthalpies of gelatin depend upon the ratio
of proline and hydroxyproline (imino acids) in the source-
and pretreatment-dependent collagen molecules (Maki &
Annaka, 2020). Mammalian gelatin with good gel-forming
ability is usually obtained during the initial extraction pro-
cess performed at the lower temperatures, whereas the
subsequent extraction at the higher temperatures produces
gelatins with inferior mechanical traits attributed to accel-
erated hydrolysis (Eysturskarð, Haug, Elharfaoui et al.,
2009).
Gelatin formation can be understood from the perspec-

tive of its composition and structure. Collagen, the main

structural unit of gelatin, is a right-handed helical rod,
composed of three left-handed helices called α-chains
intertwined with the so-called collagen triple-helix, which
is a product of repeating units of the glycine-X-Y sequence
of amino acids, where X is predominantly a proline, while
Y is mostly hydroxyproline (Gómez-Guillén et al., 2011).
The triple helix of collagen makes up a fibrous structure
that arranges in bundles to form the connective tissue
matrix. Stabilization of the structure is mainly achieved
by hydrogen bonding of the right-handed triple helix.
However, the crosslinks between the α-chains of the
collagen fibers organize them into a quarter-staggered
pattern (Eysturskarð, Haug, Elharfaoui et al., 2009).
The MW of a single α-chain is ∼95−100 kg/mol. The
subunits of the α-chains of collagen are released dur-
ing pretreatment and extraction of gelatin due to the
breakage of peptide bonds in the primary structures.
The crosslinks, which are stronger than the hydrogen
bonds, exist between the inter-β-chain and inter-γ-chain,
which are in turn composed of two and three covalently
crosslinked α-chains, respectively (Yi et al., 2006). The
differences in the characteristics of gelatin obtained from
fish and mammalian sources could therefore be explained
in terms of the distribution of MW, the composition
of amino acids, as well as by α1/α2 collagen-chain ratio
(Eysturskarð, Haug, Elharfaoui et al., 2009). Yi et al. (2006)
reported that hydroxyproline plays the most important
role in the stabilization of the -OH group in collagen. The
thermal stability of collagen is also affected by the total
glycine–proline–hydroxyproline sequence. Maqsood and
Benjakul (2011) mentioned that the quantity of proline
and hydroxyproline in fish skin was associated with the
temperature of the habitat. The warm-water species exhib-
ited higher content of these imino acids in their skin than
that of their cold-water counterparts, which ultimately
affected the thermo-stability of gelatin produced from fish
collagen.

3.1.2 Factors influencing gelatin structure

The composition of fish gelatins is considerably variable
when compared with that of mammalian gelatins. This is
due to the diverse origins of extraction with respect to the
raw materials, such as skin, bone, and scales from cold-
and/or warm-water fishes. The gelatin composition, espe-
cially the amino acid content, contributes to its diverse
applications in multiple food systems and pharmaceutical
industries. Therefore, the properties of fish gelatin need to
be improved to replace the usage of the functionally supe-
rior mammalian gelatin, which can be manipulated by the
adjustment of processing conditions and process parame-
ters.
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Other factors affecting the intrinsic properties of col-
lagen include the breed of species, age, the pattern
of feeding, storage factor, environmental condition, the
concentration of gelatin solution, time and temperatures
of gel maturation, gel drying temperature, pH, salt con-
tent, as well as the averageMWand the distribution ofMW
(Boran et al., 2010; Koli et al., 2013). Some authors hypoth-
esized that substances like salt, glycerol, and enzymes
could modify the structure of gelatins to improve their
rheological properties in industrial processing (An et al.,
2010). These gelatin modifiers can be classified into two
groups, namely electrolytes and nonelectrolytes. In gen-
eral, the electrolytes affect the biophysical attributes of pro-
teins, principally bymanipulating their ionic force and sys-
tem pH. These attributes include gelation, water-holding
capacity, swelling capacity, solubility, and viscosity. The
nonelectrolytes, which include sugars and glycerol, gener-
ally improve the strength of the gelatin-based gels (Krishna
et al., 2012). The examples of the modification methods
used to modify the biophysical attributes of fish gelatin are
listed in Tables 4 and 5.

3.1.3 An overview of methods used to
modify gelatin function

The functionality of fish gelatin can be modified by a
myriad of methods (Hernández-Briones et al., 2009). For
instance, the addition of glutaraldehyde and/or formalde-
hyde can enhance the double bonds in collagen chains.
Blending fish gelatin with pectin, κ-carrageenan, and chi-
tosan can incorporate the properties of these biopolymers
into the fish gelatin (Koli et al., 2011). In addition, the
mixing of plasticizing agents, such as sucrose, sorbitol,
glycerol, and polyethylene glycol (Sztuka & Kołodziejska,
2009), as well as mineral salts (Razzak et al., 2016) can
enhance the mechanical attributes of fish gelatin films.
The addition of crosslinkers, such as glyoxal, formalde-
hyde, and glutaraldehyde (Almeida&Lannes, 2013) and/or
enzymes such as microbial transglutaminase (Bae et al.,
2009) can improve the functional attributes of fish gelatin.
However, synthetic crosslinking agents that exceed a cer-
tain dose are often toxic and carcinogenic and should,
therefore, only be used in a limited capacity in food systems
(Staroszczyk et al., 2014). Hence, enzyme crosslinkers are
good alternatives to chemical crosslinking agents for food
packaging (Bae et al., 2009). Apart from using only chem-
ical methods, certain physical methods may also be used
in combination to improve the functional attributes of fish
gelatin (Yang et al., 2012).
Directmodification of fish gelatin has also been reported

previously by Huang et al. (2017), which included enzy-
matic, chemical, physical, and certain complex modifica-
tions. However, adjusting the extraction conditions proved

to be a better way to alter the functionality of fish gelatin.
Moreover, comprehensive detail is available for methods
of extraction condition adjustment, the addition of pro-
teins or polysaccharides, addition of crosslinking agents,
and modification by nonthermal processing technology,
among others.

3.2 Extraction condition adjustment

The functional attributes of fish gelatin can be influ-
enced by the adjustment of the extraction conditions (Cho
et al., 2006). Changes in the concentration of acid or
alkali, extraction time, and temperature significantly alter
the mechanical and functional properties of fish gelatins
(Chiou et al., 2009; Devi et al., 2013; Hernández-Briones et
al., 2009; Jamilah & Harvinder, 2002; Karim & Bhat, 2009;
Park et al., 2020; Surh et al., 2006; Taherian et al., 2011).
For instance, gelatin has been prepared from the skin of
the Shaari Eshkeli fish by manipulating the concentration
of acetic acid (Al-Saidi et al., 2011; Kristinsson et al., 2005).
Furthermore, Wangtueai and Noomhorm (2009) reported
that the concentration of NaOH significantly affected the
extraction yield and viscosity of fish gelatin. Extraction
temperature also remarkably affected the gel strength,
whereas the extraction time affected the extraction yield,
gel strength, and viscosity. Koli et al. (2012) further indi-
cated that the skin obtained from tiger-toothed croaker fish
served as a good source of fish gelatin upon optimizing the
extractionmethod to increase the yield. This resulted in the
successful preparation of fish gelatin with optimal charac-
teristics similar to that of mammalian gelatins.
Extraction conditions remarkably influence the prop-

erties of fish gelatins, particularly the concentration of H+

and OH–. Tabare (2010) et al. (2010) improved the physic-
ochemical attributes of gelatin from rainbow trout skin
by optimizing the extraction conditions. They obtained
optimumyield and favorable physicochemical attributes at
optimum concentrations of H+ (0.121 N) and OH– (0.19 N)
for a pretreatment time of 3 h. They revealed that the H+

concentration significantly affected the distribution of the
MW, thereby affecting the gel stability and melting point.
Moreover, theOH– concentration significantly affected the
viscosity and extraction yield. Similarly, the pretreatment
time also influenced the properties of the fish gelatin. Yang
et al. (2007) used a two-step response surface methodology
(RSM) design to optimize the pretreatment time for the
production of fish gelatin from the skin of channel catfish.
This method also improved the gelatin yield, as well as
its other physicochemical properties including viscosity
and gelatin strength. The best physicochemical attributes
were obtained with NaOH and acetic acid pretreatments
(0.20 mol/L for 84 min and 0.115 mol/L for 60 min,
respectively) at 4◦C, followed by extraction at 55◦C for
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TABLE 4 Examples of modifying properties of fish gelatin

Fish source Method Improved properties Reference
Parupeneus
heptacanthus

Addition of MTGase and coconut
husk extract

Gel properties and in-vitro digestibility Avtar-Singh et al.
(2020)

Alaska pollock Addition of basil and citronella
essential oils

Structural, morphological, and thermal
properties

Tongnuanchan et al.
(2014)

Skins of silver carp Adjust extraction conditions (alkali
and acid treatment, water
extraction)

Sensory and instrumental characteristics Boran et al. (2010)

Baltic cod skins Addition of proteins (chitosan) Physico-chemical properties Staroszczyk et al. (2014)
Cold-water fish skin
gelatin

Octenyl succinic anhydride
modification

Structural, functional, and emulsion
stability

Zhang et al. (2020a)

Seabass (L. calcarifer) Spray drying with citric acid adding
pretreatment

Physico-chemical properties and fishy
odour

Sae-leaw and Benjakul
(2015)

Cod, Pollock, and
haddock skin

Addition of sodium alginate Foam and emulsion stabilization Razzak et al. (2016)

Yellowfin tuna Addition of NaH2PO4, MgCl2,
CaCl2, and glycerol

Physicochemical properties Karayannakidis and
Zotos (2015)

Commercial
warm-water fish

Addition of plant extraction (lignin) Physical and functional characterization Núñez-Flores et al.
(2013)

Chinese Herring
species

Addition of enzyme
transglutaminase

Gel properties Norziah et al. (2009)

Croaker, perch Addition of coenhancers (MgSO4,
sucrose and transglutaminase)

Gel strength and melting point Koli et al. (2011)

Skins of catfish Addition of chitosan and calcium
acetate

Physico-functional and mechanical
properties

Jeevithan et al. (2013)

Carp scales Addition of pectin and MTGase Rheological behavior, gel properties and
nanostructure

Huang et al. (2017)

Sole (Solea spp.) skins Addition of glycerol and sorbitol Sensory characteristics Gómez-Estaca et al.
(2009)

Tilapia skins Addition of sucrose, glucose and
fructose

Structural characteristics, functional
properties, and emulsion stabilization
ability

Zhang et al. (2020)

180 min. In another study, Yang et al. (2008) reported that
pretreatment with alkali and acid improved the physical
properties of channel catfish gelatin. In addition, acid pre-
treatment significantly improved the yield and viscosity
and exhibited the highest gel strength in the gelatin from
the channel catfish. Finally, the acid pretreatment group
displayed a sponge-like aggregate in the nanostructure of
gelatin. Similarly, Liu et al. (2008) adopted RSM to opti-
mize the extraction conditions to obtain gelatin from the
skin of channel catfish and reported higher gel strength
and gelling ability along with lower thermo-stability than
those of gelatin from porcine skin. They attributed this
difference in the functional properties to the different
amino acid compositions between the gelatin types.
This improvement is significant enough for the gelatin
produced from the skin of channel catfish under these opti-
mized processing conditions to be considered as a probable
alternative for porcine and bovine gelatins in the gelatin
industry.

3.3 Addition of proteins or
polysaccharides

The manufacture of films is one of the main purposes of
fish gelatin preparation. Fish gelatin films are produced
from warm-water fishes (bigeye red snapper, brown stripe
red snapper, tilapia, carp, catfish, and tuna) as well as cold-
water fishes (Baltic cod, Alaska Pollock, and Alaska pink
salmon). The properties of fish gelatins can be improved
by blending them with other polymers, particularly
proteins, such as casein, chitosan, and polysaccharides
(Acevedo et al., 2015). In another study, Eysturskarð et al.
(2010) reported improvements in the properties of gelatin
by using plasticizers and crosslinking agents. They used
monosaccharides such as mannose, glucose, and fructose
as plasticizers and ribose sugars as crosslinking agents.
The ribose sugars enhanced the crosslinking with proteins
upon mild heating by facilitating the Maillard reaction.
Moreover, blendingwith other biopolymers, such as pectin
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TABLE 5 Examples of modifying properties of fish gelatin films

Fish source Method Improved properties Reference
A commercial cod fish Addition of sugars (lactose) Barrier properties of films Etxabide et al. (2015)
Alaska pollock and salmon Adjust drying temperature Barrier and mechanical

properties of films
Chiou et al. (2009)

Alaska pollock and salmon Addition of crosslinkers
(glutaraldehyde)

Mechanical properties of films Chiou et al. (2008)

Atlantic salmon High-pressure processing Mechanical properties of films Ojagh et al. (2011)
Baltic cod skins Addition of transglutaminase or

1-ethyl-3 carbodiimide (EDC)
Water vapor permeability of
films

Sztuka and Kołodziejska
(2009)

Later calcarifer scales Gamma irradiation Mechanical and thermal
properties of films

Perkasa et al. (2013)

Fish gelatin (granules) Sugars (ribose and lactose) addition
and ultraviolet (UV) radiation

Physical properties of films Bhat and Karim (2014)

Warm-water fish Addition of nanoclay Mechanical and barrier
properties of films

Bae et al. (2009)

Dry granules Ultraviolet irradiation and sugars
(ribose and lactose) addition

Lipid oxidation ability of films Bhat and Karim (2014)

Cod, haddock, and pollock Addition of lignosulfonate Physical properties of films Núñez-Flores et al. (2012)
Commercial grade fish
gelatin

Eelectron beam irradiation Physical properties of films Benbettaïeb et al. (2016)

Water fish skin Addition of gallic acid and glycerol Antioxidant and mechanical
properties of films

Limpisophon and
Schleining (2017)

and κ-carrageenan, also improved the functional attributes
of fish gelatin (Jeevithan et al., 2013; Takeungwongtrakul
& Benjakul, 2017). In another report, Rahman et al. (2008)
developed fish gelatin after adding κ-carrageenan and
reported that the degree of turbidities was directlymanipu-
lated by the concentration of κ-carrageenan. Other factors
affecting the degree of turbidities included the pH, type of
salt added, and ionic strength of the salt. These biopoly-
mers were generally used in a variety of applications as a
thickener, stabilizer, fat substitute, taste releasing agent,
and structural component. In food applications, mixing
these biopolymers with fats, minerals, vitamins, and water
have improved the physicochemical, functional, and nutri-
tional properties. Moreover, optimization studies using
various statistical designs and kinetic studies have found
the precise mixture of biopolymers to show improvement
in the physical properties of gelatin. When biopolymers
or polyelectrolytes were mixed, it was expected that the
system would be phase-separated. Oppositely charged
polyelectrolytes would be joined together into a com-
plex, while equally charged polyelectrolytes would be
segregated into different phases (Pérez-Mateos et al.,
2009).
Chitosan, obtained from the deacetylation of chitin,

is also a widely available biopolymer that possesses
excellent functional properties. It imparts bacteriostatic
and fungistatic properties to the food systems. Hosseini
et al. (2013) observed that chitosan was biocompatible,

biodegradable, and nontoxic. Furthermore, it was shown
that introducing different levels of chitosan into fish
gelatin, in turn, influenced the functional attributes of the
gelatin films produced. For instance, the addition of chi-
tosan into fish gelatin for producing composite edible films
reduced water vapor transmission. They reported that the
gelatin film prepared by the addition of chitosan:gelatin
ratio of 40:60 exhibited the lowest solubility and water
vapor permeability, thus serving as a potential replace-
ment for mammalian gelatin in some applications. Gelatin
films were also used in the pharmaceutical industry for
the manufacture of soft and hard capsules, which were
used as containers for various drugs as well as a delivery
tool through the gastrointestinal tract (Hanani et al., 2012).
Hence, in these cases, the reduction of solubility and water
vapor permeability was a desirable attribute. Furthermore,
the addition of chitosan can inhibit the myofibril degrada-
tion during storage as revealed by Feng et al. (2016), who
coated fish gelatin with chitosan and reported reduced
myofibrillar degradation, improved functional quality, and
hampered deterioration of the gelatin obtained from the
fillet of golden pomfret during cold storage at 4◦C for
17 days. For instance, MALDI-TOF-MS analysis revealed
that the chitosan coating prevented the deterioration of
skeletal muscle andmeat sarcoplasmic proteins, including
myoglobin, tropomyosin, and myosin light chains, in fish
muscle. Lastly, the chitosan coating significantly inhibited
the microbial population on the fish fillet during storage
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at 4◦C. The best results were obtained with 0.4% chitosan
coating and 7.2% gelatin for preserving the quality of fish
fillets during cold storage.

3.4 Addition of crosslinking agents

Enhanced gel strength is required to achieve the opti-
mum quality of fish gelatin. Crosslinking agents such as
enzymes and salts can be used to improve gel strength.
Particularly, transglutaminase and tyrosinase have been
used to enhance the crosslinking and corresponding gel
strength (Purnomo et al., 2003; Sims & Bailey, 1992). The
mechanical properties and the minimum water perme-
ability are important characteristics for the development
of gelatin-based films, which can both be significantly
affected by crosslinking chemicals. Synthetic chemicals,
such as glutaraldehyde and calcium salts, as well as some
biomaterials, such as phenolic compounds and organic
acids, including tannic acid and ferulic acid, could improve
the crosslinking abilities of the gelatin-based films (Bhat &
Karim, 2014). In another study, Gómez-Estaca, Giménez,
Montero et al. (2009) also reported that mechanical and
water-barrier properties were improved by the addition of
crosslinking agents, such as glutaraldehyde, transglutami-
nase, formaldehyde, glyoxal, ferulic acid, tannin acid, and
genipin.
Another means to enhance the mechanical, functional,

and sensory attributes of food products is through the
addition of salts. Salts are an important ingredient in the
production of gelatin, which have been associated with
the improved quality and safety of gelatin, which affect
the electrostatic interactions in food matrices. The electro-
static interactions play an important role in the gel strength
and in the development of the structure and texture of
fish gelatin. NaCl, in particular, has been predominantly
used in gelatin production. However, with the growing
concerns about NaCl reduction in meat products, a com-
bination of other substituents has been reported. Other
sodium salts, such as sodium acetate, sodium bicarbonate,
and NaCl itself, could also be used in fish gelatin process-
ing to solve the odor problem. Zhou and Regenstein (2007)
tried sodium acetate and found that its use improved the
flavor and prolonged the shelf life of fish muscle. Sodium
bicarbonate had also been adopted for masking the typi-
cal aroma in meat from terrestrially farmed animals (Raz-
zak et al., 2016). NaCl is traditionally added in the cur-
ing process as a preservative because it can modify the
water-holding capacity of meat proteins to improve the
quality and texture (Sow & Yang, 2015). In gelatin man-
ufactured from salmon skin, the accompanied lipid and
protein oxidation results in a fishy odor. Therefore, wash-
ing salmon skin gelatin with various salt solutions, includ-

ing sodium acetate, sodium bicarbonate, and NaCl solu-
tions, may alleviate this problem. Orrawan and Worapong
(2012) reported that the quality of salmon skin gelatin was
improved by the reduction of fishy odors using 0.5, 1.0, and
1.5% (w/v) sodium acetate, sodium bicarbonate, and NaCl,
respectively. Although various methods such as active car-
bon absorption, yeast and lactobacillus fermentation, as
well as the addition of salts have been used to remove the
fishy odor of gelatin, the best sensory attributes have been
obtained by the active carbon absorption method.
It is also reported that various salts can affect the

melting enthalpies and gel strength of gelatins pre-
pared from warm-blooded animals (Gómez-Estaca,
Montero, Fernández-Martín et al., 2009). Karayan-
nakidis and Zotos (2015) concluded that the appropri-
ate concentrations of NaH2PO4, MgCl2, CaCl2, and
glycerol modified the physical properties of gelatin from
yellowfin tuna skin. The best results of the physical
properties were obtained when gelatin was produced with
the modification of NaH2PO4. The addition of sodium
chloride (NaCl) posed negative effects on the physico-
chemical properties and nanostructure of fish gelatin. Sow
and Yang (2015) added NaCl into fish gelatin and reported
a reduction in gel strength and loss of textural quality.
Instead of producing a rigid gel network, 1.5% NaCl altered
the molecular order, decreased the number of helices,
increased the number of random coils/disordered struc-
tures, and increased the formation of large aggregates. An
appropriate concentration of salt is, therefore, crucial to
induce the desired structural interactions in gelatin and
incur appropriate modifications of its characteristics. Fur-
thermore, the dissociation of NaCl into Na+ and Cl– ions
affects the electrochemical properties of gelatin. Hence,
an excess NaCl concentration hinders the formation of
the triple-helix structure due to the reduced formation of
H-bonds and increased gelation time.
Enzymatic crosslinkers as well as their combination

with co-enhancers can also serve as important gel stabiliz-
ing agents. In an earlier publication, Eysturskarð, Haug,
Ulset et al. (2009) revealed an improvement of gelling
and melting points of gelatin prepared from the skin of
yellowfin tuna by chemical and enzymatic modifications,
which was superior to gelatin obtained from tilapia skin
and mammalian sources. Among the chemical and enzy-
matic methods used, the addition of glutaraldehyde was
the best method due to its high reactivity with amino
groups and comparatively low cost. Nevertheless, toxicity
remains a major limiting factor in improving the quality of
fish gelatin (Gekko& Fukamizu, 1991). Microbial transglu-
taminase (MTGases) is another enzyme that incorporates
a covalent crosslink between the amino acid residues (glu-
tamine and lysine) through the catalysis of an acyl-transfer
reaction. The introduction of crosslinking by MTGases
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improves the stability and strength of fish gelatins, thereby
improving their overall functional properties (Huang et al.,
2017). Important factors that need to be controlled to
obtain the desired thermal reversibility and gelling prop-
erties include the concentration of the MTGases, their
incubation time, and their degree of heat-inactivation,
which can be optimized by applying various statistical
designs (Eysturskarð et al., 2010). In addition, the combi-
nation ofMTGases with co-enhancers, such asMgSO4 and
sucrose, can also significantly improve the physicochemi-
cal properties of gelatin. The addition of such a combina-
tion not only increased the gelling and melting points of
the fish gelatins but also made significant improvements
in their gel strength (Gilsenan & Ross-Murphy, 2000). In
another study, Simon et al. (2003) revealed anothermecha-
nism of incorporating crosslinking at the γ-position in glu-
tamine residues using MTGases; it involved replacing the
amide ammonia in the glutamine residues with another
amine. The newly introduced aminewas an ɛ-amino group
from lysine residues. The introduction of ɛ-(γ-glutamyl)
lysine isopeptide bonds caused the formation of inter- or
intramolecular covalent crosslinks into the proteins. This
incorporation of these bonds had been previously reported
to improve the physicochemical and functional character
of proteins in other muscle-based foods, such as sausages
and tofu. Moreover, the MTGase reaction can increase the
oxygen permeability of fish gelatin films. This enzyme also
improves the tensile strength and melting enthalpies of
fish gelatin films. However, the addition ofMTGase results
in a decreased elongation percentage of fish gelatin films.
Norziah et al. (2009) also indicated that the transglutami-
nase enzyme significantly improved the gel strength of fish
gelatin.

3.5 Nonthermal technical methods

Nonthermal technical methods are the most promising
prospects for consumer convenience (Mei et al., 2014).
First, ultraviolet radiation technology (UVRT) has been
reported in some scientific publications to modify the col-
lagen solution, film, and fiber properties (Jaswir et al.,
2011). As compared to ionizing radiation,UVRT is aweaker
form of radiation with a lower penetration power but is
easier to operate and is cheaper. This technique also has
great potential for modifying the physical and mechanical
properties of protein-based films. It can polymerize sev-
eral monomers and amino acids in collagen and gelatin
and thus introduce crosslinks (Bhat&Karim, 2009). UVRT
produces radicals at the aromatic residues of collagen and
gelatin, which then bind to each other through the forma-
tion of crosslinks (Benbettaïeb et al., 2016; Bhat & Karim,
2014). For example, the gel strength of dried fish gelatin

has been improved after treatment with UVRT (253.7 nm,
30 W, for either 30 or 60 min). In addition, the viscos-
ity of dried gelatin granules decreased. Finally, the melt-
ing temperature of fish gelatin has also been shown to
change remarkably after the application of UVRT (Bae
et al., 2009). The micro-textural and -structural changes
brought about in gelatin makes UVRT a potential alter-
native method to improve the quality attributes of fish
gelatin. It is worth mentioning that contrary to the high-
energy gamma radiation, like ionizing radiation, which
might compromise their potential applications for protein-
based films, UVRT is safe to use even in edible films due to
its low energy (Otoni et al., 2012). Moreover, Perkasa et al.
(2013) also correlated the crosslinking density of fish skin
gelatinwith the treatment time ofUVRT. Short-timeUVRT
led to intermolecular crosslinking of gelatin, while long-
time UVRT acted on the breakage of gelatin molecular
chains. These two opposite processes resulted in entirely
different physicochemical properties. Despite the poten-
tial benefits of gelatin UVRT, only limited research has
been reported. Bhat and Karim (2009) reported that the
gelatin films subjected to UVRT (366 nm) improved ten-
sile modulus values as compared to those of nonirradiated
ones. Similarly, Zhou et al. (2006) reported that the porcine
gelatin microcapsules subjected to irradiation treatment
with UVRT (254 nm) increased their melting enthalpies
and reduced their solubility in water. Commercial warm-
water fish gelatin has high gel strength after UVRT, but
low viscosity; the former is attributed to a greater degree of
crosslinking, while the latter is attributed to greater chain
scission after UVRT. Similarly, Otoni et al. (2012) reported
that the treatment of cold- and warm-water fish gelatin
samples with UVRT induced crosslinking, which resulted
in the improvement of gel strength and viscosities of both
these samples (Gs et al., 2020; He et al., 2021).
High-pressure processing (HPP) technology has accrued

much attention from scientists and industry to preserve
foods and modify their functional properties. HPP desta-
bilizes the weak bonds of food systems, such as H-bonds,
electrostatic bonds, van der Waals forces, and hydropho-
bic interactions but does not affect the covalent bonds of
biopolymers, generally because of their low-energy levels
(Shimada et al., 1996). HPP has also been used to improve
the characteristics of thermally treated gels prepared from
different protein sources such as ovalbumin, muscle fish
protein, andmuscle meat protein (Ojagh et al., 2011). Mon-
tero et al. (2002) reported on gelatin-based gels prepared
from the skin of cod and megrim at two temperatures
(20 and 7◦C) treated with 200, 300, and 400 MPa and
subsequent cooling at 7◦C for 16−18 h. In cod gelatins,
the turbidity declined, while the gel strength improved
with the increasing pressure levels. Furthermore, Davies
et al. (2016) also applied HPP on a milk–gelatin mix-
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ture and optimized their rheology and microstructure by
improving the degree of aggregation, altering various lev-
els of milk/gelatin, and perfecting the proper pressure and
temperature of treatment.

3.6 Others

The benefits of multiple technologies and additives can be
integrated in the preparation of gelatin. Núñez-Flores et al.
(2013) utilized three co-enhancers, namely MgSO4 (as the
electrolyte), sucrose (a nonelectrolyte), and transglutam-
inase (the enzyme), in their study and reported that the
active modes of these co-enhancers were different in their
characteristics to alter the functional properties of gelatin.
Moreover, some antioxidants, such as butylated hydrox-
ytoluene (BHT) and tocopherol, were added to improve
the ability of fish gelatin to form films. For instance, Nil-
suwan et al. (2016) evaluated the extracts of borage seeds
and leaves for their polyphenol contents and antioxidant
activities. Nevertheless, they also noted a decrease in the
breaking force of these films as a negative property. In con-
clusion, the extracts of borage seeds and leaves exhibited
higher antioxidant capacity in edible gelatin films than
those of BHT and tocopherol. In another study, the addi-
tion of lignin to gelatin caused a certain microphase sepa-
ration as reflected by structural analysis, which inhibited
the interaction among the gelatin molecules (Luccia et al.,
2005). Furthermore, Shyni et al. (2014) presented that the
mechanical properties of gelatin-based gels were improved
by eliminating themolecules with lowMW.However, they
also showed that the pH levels close to the isoelectric point
of gelatin did not affect its mechanical properties. By con-
trast, in another study, Eysturskarð et al. (2010) reported
a direct link of low MWwith the mechanical properties of
gelatin gels. More importantly, they reported a strong asso-
ciation of the mechanical properties with the fractions of
α- and β-chains, as well as the presence of the molecules
with high MW. They also positively correlated the bloom
value with the α- and β-chains, as well as with the macro-
molecules in mammalian gelatin. Furthermore, positive
correlations were also reported for the dynamic storage
modulus with the fractions of the β-chains and macro-
molecules in the gelatin produced from cold-water fish. In
agreement with the previously cited study, the fraction of
small molecules exhibited a negative correlation with the
mechanical properties of mammalian gelatin and a nega-
tive correlation of the dynamic storage modulus with the
fractions of α-chains and small molecules in the gelatin
from cold-water fish.
The odor problem associated with fish gelatin requires

improved processing methods and the use of food addi-
tives. Optimization strategies have been developed by uti-

lizing co-enhancers during the manufacturing process to
reduce the off-odor and improve the desired functional and
rheological attributes of fish gelatin. Pretreatments with
citric and acetic acids have also been used to eliminate
the off-odor of fish skin gelatin. After treatment with citric
acid, the fish skin gelatin exhibited a reduced fishy odor as
compared to that treated with acetic acid (Hosseini et al.,
2013). The use of citric and acetic acids was associated with
increased binding sites for reactive volatile compounds in
gelatin, which ultimately resulted in the unavailability of
these compounds for oxidation. This processing method
could also influence the off-odor produced during the
manufacture of gelatin. Compared with fish gelatin pro-
duced using freeze-drying, fish gelatin produced by spray
drying has lower aldehydes, ketones, and alcohols, and
a less fishy smell (Monsur et al., 2014). In addition, the
lower TBA reactive substances (TBARS) and peroxide val-
ues in the spray-dried gelatin indicated reduced availabil-
ity of volatile compounds for oxidation, thus enhancing
the quality and safety of fish gelatins. Hurdle technology,
that is, the combination of two or more technologies to
enhance the safety and quality of products, can be used to
control the production of off-odor and make the off-odor-
producing volatile compounds unavailable. For instance,
spray-drying along with appropriate pretreatments effec-
tively reduced the production of fishy odor and flavor in
fish gelatins (Sae-Leaw et al., 2016).

4 TECHNO-FUNCTIONAL GAP
ANALYSIS AND FUTURE DIRECTIONS

4.1 Techno-functional gap analysis

According to a report by the FAO, the present worldwide
production of fish is∼179millionmetric tons, out of which
∼156 million metric tons are available for human con-
sumption (Oliveira et al., 2020). However, more than 25%
is wasted (unutilized) every year in terms of the recover-
able fish scale, fin, bone, and skin (Gómez-Guillén et al.,
2011). Therefore, efforts are being made to manufacture
gelatin from fishwaste, though to date only 1.5% of the total
gelatin production worldwide is derived from fish. This
exciting market opportunity has been comprehensively
explored, yet several technological gaps leave it unripe to
obtain maximum benefit. These gaps include the techno-
functional gaps related to gelatin production, quality, and
analysis as compared to traditional gelatin acquired from
bovine sources. Thermostability, unacceptable color, trace-
ability, yield, and bloom strength have been addressed by
researchers, but their implementation for fish gelatin is
limited.
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Thermostability of fish gelatin is weaker than that of tra-
ditional gelatin. This has been attributed to the amino acid
profile of collagen, which varies between fishes depend-
ing on their habitat. Particularly, the proline, hydroxypro-
line, and glycine content in cold-water fishes varies from
that in mammalian collagen. The functionality of fish
gelatin is severely compromised because of low thermosta-
bility; hence, efforts are needed to improve it. Of inter-
est, a study has been published that focused on improving
the thermostability of porcine gelatin to improve the gel
strength at different temperatures (Gómez-Guillén et al.,
2011). The addition of transglutaminase in gelatin altered
its thermostability by increasing the crosslinking degree
under acidic conditions at high temperatures. The pH
was initially adjusted to 6 for crosslinking purposes for 1
to 4 h, and then further adjusted to 5 (Du et al., 2021).
Crosslinking facilitated the formation of covalent bonds
between gelatin fragments, increasing the thermostabil-
ity of the gelatin (Du et al., 2021). Moreover, the inclusion
of anionic gums, such as Arabic, xanthan, and tragacanth
gums, in gelatin increased the intermolecular crosslink-
ing via electrostatic interactions. By contrast, the incor-
poration of nonionic gums increased the intermolecular
crosslinking by modifying the gel viscosity. Such modifi-
cation, as well as the increase of electrostatic interactions,
reduced the fluidity of the gels, thus increasing the ther-
mostability of fish gelatin. The cause of viscosity modi-
fication was attributed to the polymer interaction effect.
The anionic groups of tragacanth and Arabic gums formed
interactionswith the cationic groups of gelatin, resulting in
the formation of a stable network. Likewise, guar gum cre-
ated a pseudo-junction zone in fish gelatin through inter-
molecular entanglement due to the disruption of the lat-
ter’s helical assembly by reorganizing the water molecules
in its structure. Xanthan gum imparted void filling and vis-
cosity modification of fish gelatin for the improvement of
the thermostability (Binsi et al., 2017). The modification of
the moisture content through high-temperature treatment
(135−140◦C) promoted the formation of a polymer network
in fish gelatin that altered the equilibrium state of fibrillar
and globular proteins, as well as intermediates to increase
the thermostability of fish gelatin (Iakubova et al., 2021).
The fishy odor and compromised color are serious

defects of fish gelatin that decrease consumer acceptance.
Clarity is an important aspect of high-grade gelatin to
broaden its applicability. Gelatin is generally colorless and
has a degree of whiteness close to 100%. The color of
fish gelatin is regulated by different factors, including the
type and amount of raw materials, fish species, as well as
the methods and conditions of extraction (Siburian et al.,
2020). In this regard, the treatment of gelatin with NaCl
and 0−1.0% w/v activated carbon proved to be effective
in removing the fishy odor and color of fish gelatin. The

maximum clarity (93.3%) of color was obtained with the
combination of 0.5% NaCl and activated carbon (Tinrat &
Sila-Asna, 2017). In addition, 1.0−3.0% w/v β-cyclodextrin,
0.1−0.5% w/v diatomaceous earth, and 0.5−2.0% w/v pow-
dered activated carbon were used at mild temperatures
(30−50◦C) for 10−60 min in the gelatin derived from
tilapia (Oreochromis niloticus) skin. The optimized condi-
tions increased the clarity whereby the fish gelatin turned
colorless from the initially yellowish color (Zhang et al.,
2017). Furthermore, the issue of a fishy odor of fish gelatin
has been addressed by ensuring adequate filtration or by
pretreatment with acid, alkali, or salt, including either
H2SO4, citric acid, NaOH, or NaCl at the concentration of
2, 1, 2, and 15 g/L, respectively (Tohmadlae et al., 2019).
Traceability is a serious gap in gelatin production, not

only from fish sources, but also traditional sources such as
bovine, porcine, and others. Moreover, the use of bovine
carrying prion proteins in fish gelatin has been linked to
BSE-related problems that can cause fatal neurodegener-
ative disease (Hameed et al., 2018). Therefore, traceability
of the collagen source is imperative; however, there is still
a lack of effective traceability strategies for gelatin (Jiang
et al., 2020). Recently, multielements and stable isotope
methods were used to distinguish the gelatin samples. The
element traceability method showed higher accuracy as
compared to the stable isotope method because of the suc-
cessful validation of many traceability indicators. More-
over, as the element traceability method is more conve-
nient, results could be obtained quicker than by using the
isotope traceability method. Furthermore, traceability sys-
tems involve acquiring information from various suppliers
of the raw materials used in a production process. Since
fish collagen is present in minute quantities, acquiring the
information from various sources can be problematic.
The functionality of fish gelatin can be improved by the

methods adopted in mammalian gelatin manufacturing.
Particularly, for swift adoption, the structural attributes
of fish gelatin, which affect its physicochemical traits,
need to be clearly understood through effective analyti-
cal methods. Various analytical methods can be used for
evaluation of the protein nanostructure of gelatin includ-
ing Raman spectroscopy, circular dichroism spectroscopy,
high-performance liquid chromatography, gas chromatog-
raphy, size-exclusion chromatography multiangle laser
light scattering, gel electrophoretic analysis, rheometer,
spectrophotometer, and Fourier transform infrared spec-
troscopy. Additionally, the scanning electron microscope
(SEM) and transmission electronmicroscopy (TEM)meth-
ods are two commonly used methods to observe the con-
figuration of gelatin. However, complex pretreatments
applied to the gelatin samples before SEM/TEM investiga-
tion often interfere with the results related to the structure
of gelatin.
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The fundamental quality determinants of fish gelatin are
the gel strength or bloom value (70−270 bloom), gelling
point (8−25◦C), and melting temperatures (11−28◦C),
which play important roles in its gelling potential (Huang
et al., 2019). The underrepresented use of fish gelatin
is primarily associated with its inferior gelling strength
compared to that of bovine gelatin. The gelling ability is
dependent on the chemical profile of the fish source and
the environmental conditions, such as the temperature
of the habitats. Moreover, amino acid content, MW, and
the configuration of the α- and β-chains also affect the
gelling potential of fish gelatin (Karayannakidis & Zotos,
2016). The gelatin extracted from cold-water fish exhibits
a gel strength ranging between 119.6 and 273.0 g, which
is significantly lower than that obtained from warm-water
fish (293.2−466.4 g), due to the low content of hydrox-
yproline (Nitsuwat et al., 2021). By contrast, mammalian
gelatin possesses the highest gelling potential (100−300
bloom) that enables a more extensive scope of applica-
tions than fish gelatin. In this regard, various strategies
have been utilized to increase the gelling strength of fish
gelatin, including enzymatic modification (use of laccase,
tyrosinase, and MTGase); chemical modification (Huang
et al., 2019); phosphorylation by the application of phos-
phorus oxychloride, phosphokinase, sodium tripolyphos-
phate, and trisodium trimetaphosphate (Xiong et al., 2016);
induction of crosslinking through aldehyde modification
by introduction of covalent stable amide bonds between
gelatin chains (Padrão et al., 2014); phenolic modification
using ferulic acid, caffeic acid, tannic acid, gallic acid, and
rutin to facilitate hydrophobic interactions among the aro-
matic rings and hydrophobic side chains of phenols and
fish gelatin, respectively; physical modification with elec-
trolytic or nonelectrolytic substances including salts like
CaCl2, MgCl2, and NaH2PO4; and lastly, by mechanical
treatments, that is, HPP, drying, irradiation, and ultra-
sound (Wu et al., 2015).
Fish gelatin has a lower yield (6−19%) than the gelatin

acquired from mammalian origin (Muyonga et al., 2004).
The gelatin obtained from Spanish mackerel (Scomberro-
morus commersoni) andNile tilapia had 13.03% (Kusuman-
ingrum et al., 2018) and 12.1% yield (Martins et al., 2018),
respectively. A lower yield is obtained from fish scales
than from fish skin due to their dense structure and
less collagen content. The variation in gelatin content is
attributed to numerous factors, including the collagen con-
tent of the raw material, extraction method, and condi-
tions (time, temperature, pH, ionic strength, acid type,
and pretreatment time). Sufficient extraction and pretreat-
ment times aid in the demineralization of scales, lead-
ing to efficient gelatin extraction and improved yields
(Feng et al., 2015). Moreover, collagen solubilization and
swelling under acidic conditions during extraction also

contribute to high yield (Martins et al., 2018). By contrast,
low yield is related to gelatin loss through leaching during
washing, indicating incomplete hydrolysis of the collagen
(Kusumaningrum et al., 2018). Common gelatin extraction
methods such as microwave extraction, sonication, super-
heated steam extraction, and water bath treatment have
different extraction rates. For instance, Kim et al. (2020)
obtained the highest gelatin powder yield using the super-
heated steam extraction method. One of the most utilized
approaches to enhance the obtained gelatin content of fish
is the use of enzymes during extraction. Enzymes, such
as alkaline protease obtained from Bacillus licheniformis,
result in a significantly increased yield of 13−46% when
used at doses of 5−20 U/g. Protease influences the extrac-
tion rate by efficient hydrolysis of the covalent bonds, as
well as by disrupting the crosslinks between the molecules
of fish collagen (Kouhdasht et al., 2018). Other meth-
ods, including nonenzymatic reactions and the addition of
ascorbic acid and fructose, resulted in a yield of 13.2± 2.3%
(Guerrero et al., 2020).

4.2 Recommendations

Despite the tremendous potential of converting large quan-
tities of fish waste into fish gelatin, this potential market is
lagging because of its issues in thermostability, the fishy
odor and clarity, traceability, structural attributes, bloom
strength, melting temperatures, and the yield of gelatin
obtained from fish origin. Based on the discussion of these
attributes in the review, the following recommendations
can be useful:

1. The thermostability of fish gelatin should be enhanced
through the improvement of intermolecular crosslink-
ing, the adjustment of viscosity and intermolecular
entanglement, the void-filling abilities of enzymes and
natural gums, and by high-temperature treatments.

2. The fishy odor should be controlled, and the color of
fish gelatin should be decolorized with the help of β-
cyclodextrin, activated carbon,NaCl, and diatomaceous
earth,whichwill improve the consumer acceptability of
fish gelatin.

3. New methods for tracing the origin, source, and fate
of raw materials and gelatin should be developed and
validated. Thus far, the least amount of work has been
published related to traceability systems. Stable isotope-
based traceability methods are recommended, which
can improve the traceability of suppliers of fish raw
materials from various sources and geographical loca-
tions.

4. The quality characteristics of fish gelatin need to
be tested using microscopic, spectroscopic, chro-
matographic, rheological, and other novel analytical
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F IGURE 1 Narrowing the technofunctional gap between fish gelatin and mammalian gelatin (adapted from Sow et al., 2019 and Lin
et al., 2017)

methods for guiding the optimization of its structural
attributes, thus enhancing their market acceptability.

5 CONCLUSION

Mammalian gelatin is currently leading the whole gelatin
market; however, the commercial interest for fish gelatin is
growing considerably. The reason for the shift is concerns
related to the underutilization of waste generated from
the fish-processing industry, as well as due to religious
and cultural objections. Studies conducted on gelatin have
demonstrated that there are clear connections between the
functional properties and intrinsic qualities of gelatin with
the materials, sources, and/or extraction conditions used
during gelatin manufacture. This review discussed vari-
ous methods for improving the physicochemical and func-
tional attributes of fish gelatin and made suggestions for
the optimum conditions (i.e., adjusting the gelling temper-
ature from 13−19◦C to 23−25◦C, gel strength from ∼200 to
250 g, andmelting point from∼25 to 30◦C).Using the latest
production methods and analytical techniques discussed
in this study, shown in Figure 1, fish gelatin production
could be accelerated in the near future, thus enhancing its
competitive market share along with its practical applica-
tion.
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