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Introduction

Apricots (Prunus armeniaca L.), a kind of climacteric 
fruits, are favored by consumers for their flavor and tex-
ture, but they are highly perishable. Apricots soften rapidly 
after harvest. Once softened, they are easily damaged such 
as latent damage, which limits their marketing time [1, 2]. 
Therefore, a common practice for handling and storing 
apricots is early harvest and applying postharvest technolo-
gies to extend the shelf life [1–4]. The main problem dur-
ing marketing of apricots is excessive softening. It has been 
reported that propylene treatment hastens apricots’ soften-
ing [5], while it is also known that softening may begin 
before the peak of ethylene production [6]. Therefore, little 
is known of the mechanism of softening in these fruits, and 
even the role of ethylene is unclear.

Firmness is a major quality factor affecting the commer-
cial value of apricot fruits. Decreased firmness or softening 
of fruits was reported to be associated with the depolym-
erization and solubility of polysaccharides of fruit cell wall 
[7]. Fruit softening is associated with pectin solubility and 
sugar loss from cell wall fractions, especially fraction of 
CSP [8]. Appropriate concentration of calcium can exhibit 
the textural degradation by connecting ionically bound 
pectins [3, 4, 9–11]. Appropriate calcium treatment can 
decrease the loss of CSP and disaggregation of the middle 
lamella of fruits, thus maintaining the integrity of fruit mid-
dle lamella [12].

It is widely accepted that morphology arrangement is 
critical in determining roles of cell wall materials during 
postharvest in addition to chemical compositions. How-
ever, detailed evolution of fruit CSP is not clear during 
postharvest considering that what are the major reactions 
participating in this process is not clear due to the hetero-
geneous property of the CSP morphology in nanoscale. 
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Atomic force microscopy (AFM) is a powerful nanotech-
nology tool to investigate heterogeneous macromolecules 
[13]. It characterizes variable structures of CSP rather than 
just providing sample-wide average of the samples as many 
other methods [13]. Different sources and existing forms of 
pectins characterized by AFM and similar equipment have 
been reported, including tomato and beet [14, 15], peaches 
[16], cherries [17], strawberries [18] and jujubes [19]. 
These AFM results indicated depolymerization of fruit pec-
tins during fruit ripening. However, to our best knowledge, 
there was no report about the effects of pectinase on pec-
tin for simulating the changes in pectins during postharvest 
handling and storage. Using in vitro AFM study would pro-
vide an approach to directly study the effects of pectinase 
on individual pectin molecules and help to elucidate the 
textural changes in apricot fruits during storage.

The objective of this study was to elucidate the role of 
pectinase in postharvest quality and property changes in 
apricot fruits. The nanostructural changes in CSP under 
pectinase treatment were investigated and compared with 
natural changes in CSP during storage in vivo. Qualitative 
and quantitative morphological changes in CSP were deter-
mined. The results could help to elucidate the fundamen-
tal changes in fruit polysaccharides and textural changes in 
postharvest fruits during storage.

Materials and methods

Fruits

‘Jinhong’ apricot (Prunus armeniaca L.) fruits were har-
vested in an orchard in Zhengzhou, Henan Province, China, 
and transported to the laboratory within 2 h. Only fruits 
with medium size at firm ripe (mature with change of peel 
color, about 1 week before fully ripe) of ripening stage with 
similar color and stalks were chosen for the experiment 
[20]. The firmness was 9.74 ± 3.50 N (n = 10).

Preparation of cell wall materials and extraction of CSP

Cell wall material (CWM) was prepared according to a pre-
vious method [11]. Peeled apricot fruits (10 g) were boiled 
for 20 min in 80 % ethanol (v/v) and filtered. This proce-
dure was repeated three times, and then the residue was 
transferred to 50 mL DMSO/H2O (9:1, v/v) and incubated 
at 4 °C for 12 h. The solution was filtered, and the solid 
residue was transferred to chloroform–ethanol solution 
(2:1, v/v) for 10 min and further treated with acetone after a 
filtration. The solid residue recovered was CWM.

The CWM from each group was treated with 10 mL 
ultra-purified water at 25 °C for 4 h for three times, and 
then it was centrifugated at 10,000×g at 4 °C for 10 min 

(Shanghai Anting Scientific Instrument Factory, Shang-
hai, China). The solid residue was then treated with 10 mL 
50 mM cyclohexane-trans-1, 2-diamine tetra-acetate 
(CDTA) on a shaker at 25 °C for 4 h. After centrifugation 
(10,000×g) at 4 °C for 10 min, the supernatant was col-
lected. The precipitates were subject to extraction with the 
above-mentioned conditions for two more times. Then, all 
the above three supernatants were pooled as fraction of 
CSP. The solution was stored at −18 °C for further analy-
sis [16].

Pectinase treatment on CSP

Carbazole colorimetry method was applied for quantify-
ing the CSP solutions with galacturonic acid as standard 
[17]. CSP solution (2 mL) was mixed with 12 mL of sul-
furic acid (98 %, w/w) in a test tube and cooled using con-
tinuous tap water, and the mixed solution was then boiled 
for 10 min and cooled again. The solution was added with 
0.5 mL carbazole ethanol solution and incubated at room 
temperature for 30 min. Concentration of the CSP was 
determined by recording the absorbance at 540 nm using 
a UV-2000 spectrophotometer (Unico Instrument Co., 
Ltd, Shanghai, China) with galacturonic acid as standard 
(Sigma-Aldrich Co., Ltd., St. Louis, MO, USA). The CSP 
solutions were adjusted to a same concentration and treated 
with pectinase solution.

CSP extracted from apricot fruits was treated with pec-
tinase (activity 40 U/mg; Beijing Solarbio Science & Tech-
nology Co., Ltd., Beijing, China) in phosphate buffer at 
pH 5.0. The initial CSP was divided into four groups, they 
were treated with pectinase at different ratios, namely 0, 
1:10,000, 1:1,000 and 1:100 (pectinase/CSP, c/c), at 5 °C 
for 5 min, then they were placed in boiling water for inacti-
vating enzyme 5 min, and finally, the samples were cooled 
using ice bath [21].

AFM operation and image analysis of CSP fractions

Nanostructures of CSP were characterized using a Vecco 
multimode NanoScope IIIa AFM (Digital Instruments, 
C.A., USA) equipped with E (J) scanner according to the 
previous methods [11, 16]. Diluted solution of 10 μL at 
approximately 10 μg mL−1 was dropped onto the surface 
of a freshly cleaved mica sheet. A slight molecular comb-
ing technique was applied on the solution using a glass cov-
erslip to comb the solution for extending the pectin mol-
ecules [16]. The mica with solution was then dried in air 
at room temperature. After that, tapping mode AFM imag-
ing was performed in air using a NSC 11/no Al tip (Mikro-
Masch, Wilsonville, OR, USA) with a resonance frequency 
of 330 kHz [16, 22]. The force constant (determined by the 
dimensions and material) of the cantilever B of the tip was 
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48 N/m, according to the manufacturer of the AFM tip. The 
scan rate was set at 0.3–1 Hz.

The AFM images obtained were analyzed off-line 
with AFM software provided by the company (Version 
5.30r3sr3). Section analysis was performed, and the surface 
profiles of the sections were then plotted to determine the 
width (W, calculated by the peak width of chain half-height) 
and height (V, the height of pectin chains relative to the mica 
plane surface) of pectin molecules by horizontal and vertical 
distances, respectively, according to our previous publication 
[23]. The length (L) of single pectin molecule was recorded 
by plotting the molecule with the software [16]. A number 
of particular chain widths or lengths observed were set as 
frequency (Fq). For each sample, more than 10 images were 
statistically analyzed for getting statistical results.

Statistical analysis

The data were analyzed with SPSS software version 13.0 
for Windows (SPSS Inc., Chicago, IL, USA). Analy-
sis of variance (ANOVA) was performed for determining 
the effects of pectinase on nanostructural degradation of 
CSP molecules. Mean comparisons were conducted using 

Duncan’s test for determining differences between treat-
ments, and comparisons that yielded P < 0.05 were consid-
ered significant.

Results and discussion

Effect of pectinase treatment on nanostructure of CSP 
molecules

Low temperature (5 °C) was applied for studying the 
effects of pectinase on CSP fractions because low tempera-
ture could partially retard the enzymatic treatment, consid-
ering that enzymatic treatment could be very efficient and 
quick at room temperature. Thus, the effect of different 
concentrations of pectinase on pectins could be differenti-
ated from AFM results.

AFM could investigate qualitative and quantitative 
dimensions including width, length and height of individ-
ual CSP chains. Qualitative and quantitative information 
of CSP pectins after pectinase treatment (pectinase/pectin 
from 1:10,000 to 1:100) was compared to those without 
pectinase treatment.

Fig. 1  AFM images of 
chelate-soluble pectin (CSP) 
from apricot without pectinase 
treatment and mild pectinase 
treatment (1:10,000). a Pectins 
without pectinase treatment, 
scan area 2.00 μm × 2.00 μm, 
height bar = 5 nm; b zoom 
plane image in the marked 
region of a, respectively, scan 
area: 1.09 μm × 1.09 μm, 
height bar = 5 nm; c another 
image of pectins without 
pectinase treatment, scan 
area 2.17 μm × 2.17 μm, 
height bar = 3 nm; d plane 
images of pectins with mild 
pectinase treatment (1:10,000, 
pectinase/CSP), scan area 
4.34 μm × 4.34 μm, height 
bar = 5 nm. Note Bs: branch-
ing structures; Ch = chela-
tor, CDTA; P = polymers; 
Lc = long chain; Ls = linear 
single fraction; Rp = releasing 
point of pectin releasing from 
the CDTA; Sc: short chain
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Qualitative nanostructure

AFM images of CSP from fresh apricot fruits with different 
concentrations of pectinase treatment are shown in Figs. 1 
and 2. The results indicated that CSP chains without pec-
tinase treatment were long (around 2–3 μm) and branched 
(Fig. 1a), which was similar to CSP of other fruits like 
yellow peaches [16]. With the increase in pectinase con-
centrations, higher frequency of short chains (<1,000 nm) 
and more cleavage points appeared, and polymers of CSP 
chains reduced.

AFM is appropriate in analyzing heterogeneous struc-
tures of CSP, for instance, branching structure (Bs), lin-
ear single fraction (Ls), long chain (Lc), short chain (Sc), 
cleavage point (Cp), releasing point of pectin releasing 
from CDTA (Rp) and polymer (P) (Fig. 1) [11, 16].

Quantitative nanostructure

Quantitative analysis of CSP morphology includes general 
and individual structure information analysis [11]. For gen-
eral information, about 30 % of CSP chains were single or 
multiple branching structures. A typical branching CSP was 
represented as ‘Bs’ in figures (Fig. 1a, for instance). After 
pectinase treatment (1:10,000), only about 20 % of the CSP 
chains had branching structures. This is related to reduced-
carboxyl-based cross-linking sites, which were destroyed 
gradually during fruit softening because of action of pectin-
degrading enzymes, resulting in deceased branches [24]. 
Our result was consistent with a previous report [20].

Nanostructural morphology changes in CSP with differ-
ent pectinase concentrations could be analyzed and dem-
onstrated. Tables 1 and 2, corresponding to the results of 
Figs. 1 and 2, respectively, show the effects of pectinase 
treatment on the widths of CSP chains and the correspond-
ing Fq of these chains. The distribution of CSP widths of 
apricot fruits by pectinase treatment was similar to the 
effect of storage time on CSP chains [11]. In both situa-
tions, CSPs shared many limited and intermittent common 
values.

As shown in Tables 1 and 2, the CSP widths were 
much influenced by the pectinase treatment, the Fq of 
chains of small width increased with pectinase concentra-
tion, which was similar to the effects of storage time on 
CSP [11]. For differently treated groups, 1:100 pectinase-
treated group had more Fq of small-width chains than 
control and 1:10,000 pectinase-treated group. The Fq of 
widths smaller than 31.25 nm for 1:100 pectinase-treated 
group was 65.5 %, while it was 3.6, 16.2 and 52.0 % for 
control, 1:10,000 and 1:1,000 pectinase-treated groups, 
respectively. Meanwhile, 1: 100 pectinase-treated group 
had less Fq of large-width chains than control and 1:10,000 
pectinase-treated groups, for instance, sum of Fq of widths 

larger than 82.03 nm for 1:100 group was 0 %, while it 
was 32.0, 5.4 and 1.8 % for control, 1:10,000 and 1:1,000 
pectinase-treated groups, respectively (Tables 1, 2). Higher-
concentration-pectinase (1:100)-treated group decreased 
the capability of cross-linking of homogalacturonans by 
enzymatically degrading the CSP molecules.

For apricot CSP heights (V), most chains were between 
0.2 and 3.0 nm, especially within 1–2 nm [11]. No sig-
nificant differences in V values were found after pectinase 
treatment (Tables 1, 2), which indicates that pectinase treat-
ment only affected specific dimensions of CSP such as 
length and width.

Fig. 2  AFM images of chelate-soluble pectin (CSP) from apri-
cot with significant pectinase treatments. a Image of pectins 
with pectinase treatment (1:1,000, pectinase/CSP), scan area 
2.50 μm × 2.50 μm; b image of pectins with pectinase treatment 
(1:100, pectinase/CSP), scan area 5.10 μm × 5.10 μm
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Table 1  Height (V) and 
frequency (Fq) of particular 
chain width (W) of chelate-
soluble pectin (CSP) chains 
without pectinase treatment 
and mild pectinase treatment 
(1:10,000)

Symbol ‘–’ means no detection 
or below the detection level

W, the peak width of chain half-
height; V, the height of pectin 
chains; Fq, the number of times 
particular pectin chain widths 
were observed

W (nm) Without pectinase treatment Pectinase/CSP (1:10,000)

Fq (N (%)) V (nm) Fq (N(%)) Fq (N (%))

11.72 – – – –

15.63 – – – –

19.53 – – – –

23.44 2 (3.6) 0.73 ± 0.28 6 (16.2) 0.22 ± 0.07

27.34 – – – –

31.25 – – – –

35.16 2 (3.6) 0.86 ± 0.21 3 (8.1) 0.41 ± 0.05

39.06 3 (5.4) 0.59 ± 0.07 5 (13.5) 0.54 ± 0.18

42.97 – – – –

46.88 5 (8.9) 0.41 ± 0.03 3 (8.1) 0.48 ± 0.12

58.59 9 (16.1) 1.02 ± 0.40 13 (35.1) 0.66 ± 0.19

65.59 4 (7.1) 1.19 ± 0.51 – –

70.31 1 (1.8) 1.73 ± 0.00 – –

78.13 12 (21.4) 1.24 ± 0.40 5 (13.5) 1.16 ± 0.33

93.75 2 (3.6) 1.50 ± 0.03 – –

97.66 2 (3.6) 1.87 ± 0.35 – –

117.19 4 (7.1) 1.27 ± 0.43 1 (2.7) 1.20 ± 0.00

156.25 3 (5.4) 1.12 ± 0.39 – –

175.78 5 (8.9) 1.77 ± 0.98 1 (2.7) 1.63 ± 0.00

234.38 2 (3.6) 1.02 ± 0.30 – –

Table 2  Height (V) and 
frequency (Fq) of particular 
chain width (W) of chelate-
soluble pectin (CSP) chains 
with significant pectinase 
treatments

Symbol ‘–’ means no detection 
or below the detection level

W, the peak width of chain half-
height; V, the height of pectin 
chains; Fq, the number of times 
particular pectin chain widths 
were observed

W (nm) Pectinase/CSP (1:1,000) Pectinase/CSP (1:100)

Fq (N(%)) V (nm) Fq (N(%)) V (nm)

11.72 – – 7 (12.7) 0.21 ± 0.06

15.63 4 (7.1) 0.82 ± 0.22 4 (7.3) 0.90 ± 0.26

19.53 5 (8.9) 0.88 ± 0.34 6 (10.9) 0.78 ± 0.32

23.44 10 (17.9) 0.91 ± 0.28 9 (16.4) 1.08 ± 0.28

27.34 3 (5.4) 0.93 ± 0.27 3 (5.5) 1.11 ± 0.11

31.25 7 (12.5) 1.03 ± 0.42 7 (12.7) 1.10 ± 0.31

35.16 – – 3 (5.5) 1.07 ± 0.06

39.06 3 (5.4) 1.15 ± 0.39 6 (10.9) 1.03 ± 0.30

42.97 3 (5.4) 1.14 ± 0.17 – –

46.88 6 (10.7) 0.91 ± 0.12 1 (1.8) 0.98 ± 0.00

58.59 7 (12.5) 1.28 ± 0.22 4 (7.3) 1.26 ± 0.14

65.59 – – – –

70.31 6 (10.7) 1.37 ± 0.05 5 (9.1) 1.41 ± 0.10

78.13 1 (1.8) 2.33 ± 0.00 – –

93.75 1 (1.8) 1.98 ± 0.00 – –

97.66 – – – –

117.19 – – – –

156.25 – – – –

175.78 – – – –

234.38 – – – –
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Pectinase also affected the length of CSP. Figure 2 
shows the frequencies of length of CSP chains with or 
without pectinase treatment. The length in the figure repre-
sented the length of single linear fractions (main chain) of 
CSP [16]. Only those linear molecules not overlapping or 
entangling, and fully within the scanned zone of AFM were 
used for statistics. The distribution of CSP lengths was in 
the range of 400–3,600 nm for non-pectinase-treated group, 
which was longer than CSP of tomato, alkali-treated pectin 
from sugar beet and sodium carbonate-soluble pectin (SSP) 
of peaches [14, 22]. This discrepancy could be due to fruit 
differences or partial degradation of alkali-treated pectin or 
SSP by β-elimination reaction [14].

During ripening, pectin modifications cause fruit soften-
ing and firmness decreasing due to pectin solubilization 
and hydrolysis of fruit cell wall. At least two enzymes are 
involved in this process: polygalacturonase (PG) and pectin 
methylesterase (PME) [20]. Pectin methylesterase (PME) 
activity of apricot fruits changes in response to different 
postharvest treatments [2]. PG contributes to pectin hydrol-
ysis and possibly is responsible for pectin solubilization, 

while PME is responsible for the binding of cations in fruit 
cell wall [20]. The current work suggests that pectinase had 
similar effects as storage time on CSP molecules, which 
could be due to the effects of mixed pectin enzymes.

The length distributions of the CSP chains with differ-
ent degrees of pectinase treatments are shown in Fig. 3. 
The results demonstrated that the largest range of apricot 
CSP lengths at harvest without pectinase treatment was 
0.5–1.5 μm, while it was 0–1 μm for pectinase-treated 
groups. And in general, higher-concentration-pectinase-
treated CSP chains had higher Fq of small lengths (Fig. 3). 
Decreased long- and increased short-CSP chains by pecti-
nase demonstrated that pectinase facilitated the degrada-
tion of CSP in width and length. These results suggest that 
changes in CSP fractions associated with firmness changes 
in postharvest apricots might be due to pectinase effects on 
CSP length and width.

Figure 4 shows a schematic image of quantitative width 
information of CSP under pectinase treatment based on 
Tables 1 and 2. It revealed a quantitative relationship of 
widths among CSP chains. The results were similar to other 
fruits that the chain widths were composed of several basic 
units [11, 16, 17, 25, 26].

Conclusion

In vitro effect of pectinase on CSP fraction was studied. 
CSP chain shortened in width and length after pectinase 
treatment. Relative frequency of widths less than 31.25 nm 
was 3.6 % for control group, while it was 16.2, 52.0 and 
65.5 %, respectively, for 1:10,000, 1:1,000 and 1:100 
(pectinase/CSP) pectinase-treated groups. Most of the CSP 
lengths were 0.5–1.5 μm, while it was 0–1 μm for pecti-
nase-treated groups. Pectinase treatment shared some simi-
lar effects on CSP fraction as storage time.
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